Fib uurd

]

L

9IS

C 9145

Copy Mo, l 9’-.03”5-

ESD-TR-77-137

MTR-3349

GEOGRAPHIC DATA DISPLAY IMPLEMENTATION

JUNE 1977

Prepared for

DEPUTY FOR DEVELOPMENT PLAN
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
Hanscom Air Force Base, Bedford, Massachusetts

Project No., 7090
Prepared by
THE MITRE CORPORATION

Approved for public release;
distribution unlimited.

Bedford, Massachusctts
Contract No. F19628-77-C-0001

ADAOYUYLZ

When U.S. Government drawings, specifications,
or other data are used for any purpose other
than a definitely related government procurement
operation, the government thereby incurs no
responsibility nor any obligation whatsoever; and
the fact that the government may have formu-
lated, furnished, or in any way supplied the said
drawings, specifications, or other data is not to be
regarded by implication or othe-wise, as in any
manner licensing the holder or any other person
or corporation, or conveying any rights or per-
mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

JACK SEGAL, Go-1 \
Pro ject Engineer

Director, Advanced Plannin
Deputy for Development Plan

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-77-137
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

GEOGRAPHIC DATA DISPLAY IMPLEMENTATION

6. PERFORMING ORG. REPORT NUMBER

MTR-3349
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(Ss)
D. H. LEHMAN F19628-77-C-0001
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

: AREA & WORK UNIT NUMBERS

The MITRE Corporation
Box 208 Project No. 7090
Bedford, MA 01730
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Development Plan JUNE 1977
Electronic Systems Division (AFSC) 13. NUMBER OF PAGES

Hanscom Air Force Base, MA 01731 226

14. MONITORING AGENCY NAME & ADDRESS(if different from Controiling Oftfice) 15. SECURITY CLASS. (of this report)

UNCLASSIFIED

1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Biock 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by biock number)

COMPUTER SOFTWARE DISTRIBUTED PROCESSING
COMPUTER GRAPHICS GEOGRAPHY
DATA BASE

20. ABSTRACT (Continue on reverse side ii necessary and identiiy by biock number)

To support automated displays of positional intelligence data, detailed geographic
background displays are needed over a wide range of scales. The Geographic Data
Display System (GDDS) displays geographic data on a raster scan display and allows
the user to zoom and translate around a map of Central Europe. As the user zooms
in on an area, the area is displayed in greater detail, and geographic features such

DD , ji:“‘n 1473 EDITION OF 1 NOV 65 1S OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Concluded)

as rivers, roads, etc., are added to the display. This report outlines the

capabilities and design of the GDDS, describes the implementation, and documents
the programs.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

ACKNOWLEDGMENTS

This report has been prepared by The MITRE Corporation under
Project No. 7090. The contract is sponsored by the Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base,
Massachusetts.

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

LIST OF TABLES
SECTION I

SECTION II

SECTION III

SECTION IV

INTRODUCTION
GEOGRAPHIC DATA DISPLAY SYSTEM

INTRODUCTION
OPERATOR CONTROLS
TRANSLATE AND ZOOM
Translation
Zoom
FEATURE SELECTION
Format
Macro Expansion
Menu Operation
OPERATING MODES
Automatic
Normal
Special
SYSTEM USE

GEOGRAPHIC DATA DISPLAY DESIGN

INTRODUCTION

DATA BASE PREPARATION

REQUIRED USER FUNCTIONS
Scaling and Levels of Detail
Translating and Neighborhoods

DATA STRUCTURES
Detall Levels and Blocks
Translation with Blocks
Zooming with Blocks

DATA MANAGEMENT
Data Organization
Index Organization
Retrieval Process

PARALLEL DATA BASES

IMPLEMENTATION TOOLS

INTRODUCTION

SYSTEM ARCHITECTURE
Design Philosophy

3

Page

10

10
10
10
13
13
16
16
16
18
19
19
1:9
20
20

22

22
22
24
26
26
28
28
30
31
31
34
34
34
38

41
41

41
41

SECTION V

APPENDIX I

APPENDIX IT

APPENDIX III

APPENDIX IV

APPENDIX V

APPENDIX VI

TABLE OF CONTENTS (concluded)

MESSAGE PROCESSOR

GRAPHICS PACKAGE
Instancing
Coordinate Systems
Use by GDD
Implementation

FILE MANAGEMENT PACKAGE

IMPLEMENTATION DESIGN OF THE GDD

INTRODUCTION

MODULE COMMUNICATION

MENU MODULE
MENUUP
MESLCT

FUNCTION REQUEST HANDLER
Zoom
Translate

DATA EXCEPTION MODULE
Module Entry
Automatic Mode Zoom
Normal Mode Zoom
Special
Translation

DATA BASE MANAGEMENT
MDISP
RPCOL

MODE

INITIALIZATION

DATA BASE CONSTRUCTION PROGRAMS AND PROCEDURES
SYSTEM INITIALIZATION PROGRAM

GDD OPERATING PROCEDURES

COMMONS

PROGRAM SUMMARY SHEETS

PROGRAM LISTINGS

Page

43
44
45
45
46
48
48

49

49
49
51
53
53
57
57
59
59
61
61
61
62
62
63
63
65
65
67

68
79
102
104
123

169

Figure

23

24
25
26
27
28

29

LIST OF ILLUSTRATIONS

Display and Controls of the Geographic Data
Display System

Layout of GDD Function Key Pad

Translation Before and After Sequence

Zoom Before and After Sequence

Menu Format

Detail Ranking Algorithm

Loss of Context Due to Lack of Detail

Translation with Neighborhoods

Translation with Blocks and Neighborhoods

Zooming with Blocks and Detail Levels

Blocking and Ordering a Detail Level

Ordering and Format of an Index for a Detail Level

Data Base Retrieval Process

Parallel Data Base Selection

Schematic of 7090 Computer Facility

Inclusion of One Image into Another

Internal Communications of the Six GDD Modules

Flowchart of MENUUP of Menu Module

Flowchart of MESLCT of Menu Module

Flowchart of Function Request Handler

Flowchart of Data Exception Module

Flowchart of MDISP Entry into Data
Management Module

Flowchart of RPCOL Entry into Data
Management Module

Generated Entry and Exit Points for Crossed Blocks

Assignment of Single-Point Chains

Example Teletype Input for IMAGE Program

IMAGE Program Output Restating Input Parameters

IMAGE Output Showing Number of Chains and Points
per Map Block, Drum Block Address and Byte
Entry in Drum Block for Each Block of Data

Output of IMAGE Program Showing Index for
Column of Data

Page

11
12
14
15
17
25
27
29
32
33
35
36
37
39
42
47
50
54
55
58
60

64
66
70
70
76
77
77

78

LIST OF TABLES

Table Page
I Module Subroutines 52

II card #1 84
III Card #2 85
v Card #3 86

\' Card #4 87

VI Card #5 88
VII Card #6 89
VIII Carxd #7 90
IX Card #8 91

X Card #9 92

XI Card #10 93
XII Card #11 94
XTII11 Card #12 95
X1V Card #13 96
XV Card #14 97
XVI Card #15 98
XVII Card #16 99
XVIII Card #17 100
XIX Card #18 101
XX COMMUN COMMON 107
XXT CURSTA COMMON 108
XXII DATSTA COMMON 110
XXIII ERASE COMMON 112
XX1IV COLORS COMMON 113
XXV DATBAS COMMON 114
XXVI FAC COMMON 116
XXVII FILE COMMON 117
XXVIII MACRO COMMON 118
XXIX MAP COMMON 119
XXX MENCON COMMON 120
XXXTI MNUTIA COMMON 121
XXXII TREES COMMON 122

SECTION I

INTRODUCTION

Geographic Data Display (GDD) is a tool developed by Project
7090 to aid the real-time display of operational and intelligence
information. This data is readily available in Command, Control
-and Communication Centers, but it is available in such copious
quantities that it must be summarized and properly displayed to be
useful. This "properly displayed" is the motivation behind the GDD.

Major subsets of operational and intelligence data are posi-
tional in nature, and therefore any method of representing the data
for quick reference by an operator requires a map. For a more
detailed analysis the actual raw data of latitude, longitude points
must also be available to an operator, but obviously an operator
can more rapidly assimilate information from a graphics image than
from a list of data points.

One intention of Project 7090 is to develop techniques for
displaying operations/intelligence information over a wide range of
granularity — from data summarized over a large area of several hundred
miles to individual reports displayed over only ten square miles. To
support this summarization task, maps are required that adequately re-
present the geography at any needed scale. The Geographic Data Display
System has the needed capability to project detailed maps as back-
ground for information displays over a wide range of scales.

The specific problem addressed by the GDD is, then, the
manipulation of geographic data to provide adequate resolution of
geographic features over a wide range of scales. If more data is
displayed than can be absorbed by the resolution of the display
device, the features will appear fuzzy. If too little data is used,
the geography will appear sparse and angular, and the viewer may

lose any sense of context. Since the purpose of the GDD is to

7

allow a viewer to zoom in and out on a displayed map and still
maintain clear, detailed geographic feature representation, an
ability to dynamically vary the amount of data used for the display
had to be developed. The solution to this problem used by the
GDD was levels of detail.

A level of detail of a geographic feature is a map containing
a fixed amount of data representing that feature. It can only be
‘displayed over a relatively small range of scale before it gives
fuzzy or angular displays. For any feature several levels of
detail are defined; each successive level contains more data
than the last,and each level is displayed only over its defined
scale range. When the user zooms out of the scale range of a
level of detail, the display is defined from the next level of
detail. Such a scheme solves the problem neatly and puts no limit
on the scales that can be displayed by the system.

To make the GDD.even more flexible, not only is the amount
of data displayed variable, but the actual geographic features
displayed can be varied by the user to tailor the display to his
needs. There is a feature library in the system containing coast
lines, political boundaries, rivers, roads, etc. The user can
select from this library the features he wants displayed for his
particular application. Each individual feature is divided into
levels of detail, allowing the detail of features to be adjusted

independently of one another.

Another paper, ESD-TR-77-360, '"Geographic Data Base Development,

thoroughly describes the data base preparation process and programs.
This paper, then, is intended primarily as implementation level
documentation for the GDD. It will, however, give the reader a

broad overview of the system.

4

"

The first section simply describes the GDD - how the user
sees it and what it does for him. The next section is an over-
view of the conceptual design which begins by establishing the
user needs and describing the data bases the system will use. The
section then develops the design of the GDD around these givens
and concludes with the data structures and data management tech-
niques used in implementation. Section IV covers the system
architecture and software tools used to implement the GDD. The
final section provides top level documentation for each of the six
modules of the GDD. The appendices contain additional, more detailed
documentation of the programs, variables and operating procedures.
The appendices assume a working knowledge of the 7090 computer
facility's operating system.

SECTION II

GEOGRAPHIC DATA DISPLAY SYSTEM

INTRODUCTION

To the user the GDD is a TV screen on which maps are pro-
jected as background for operation and intelligence information
displays. Using a trackball and function keyboard the user can
invoke a few basic functions for manipulating the display and
tailoring the display to his needs. In this section, these functions
and other capabilities of the GDD are described as they appear to

the user.

OPERATOR CONTROLS

To operate the GDD, the user sits in front of a TV screen witﬁ
a function keyboard and a trackball positioned near by. Figure 1
shows an operator working with the GDD.

The function keyboard diagrammed in Figure 2 has twelve buttons,
of which eight are currently used. Three of these are for zoom
and translate requests, two for feature selection from a menu and
three for changing the modes of the system. These functions are
described below.

The trackball controls the position of a cursor on the TV screen.
The cursor is used to select a point on the display for use in

performing a translate, zoom or feature selection function.

TRANSLATE AND ZOOM
The portion of the world displayed on the TV screen can be

fully described by its center point and extent*, The user can

*Extent is defined as the inverse of scale. The GDD was implemented
using variables representing extent. To be consistent, extent is
used throughout the document.

10

k
|
#
¢
¥
]
L]

Figure 1.

Display and Controls of the Geographic Data Display

11

System

&

i 'E"v'_ - .

WP =

ZOOM ZOOM
ouT IN
TRANS -
LATE
MENU SELECT
AUTOMATIC| NORMAL | SPECIAL

12

Figure 2 LAYOUT OF GDD FUNCTION KEY PAD

manipulate the display he sees by manipulating the center point and
extent with translate and zoom functions.

Translation

Translation changes the center point of the displayed map. The
user selects a point on the display screen by positioning the
trackball-controlled cursor over the desired point. When the
translate function key is hit, the GDD moves the point designated
‘by the cursor to the center of the display screen. The photographs
in Figure 3 show a before and after sequence of a translate,
Note that part of the map that was not in the original display has
been brought on from off the screen. In essence, the user is
viewing the map through a restricted window. As the user translates,
he moves the window around the map to view a different area. If
the user translates out of the mapped region, he will see a boundary
line marking the edge of the map. Beyond this edge the map will be
blank.

Zoom

With the zoom function the user can alter the extent of the
area displayed around the center point, effectively changing the
size of the restricted window in the analogy used above. The
operator uses the trackball to position the cursor over the point
he wishes to remain stationary during the zoom. The user hits
either the zoom in or zoom out function button causing the distance
between the selected point and all other points in the display
to be either multiplied or divided by the magnification factor
(normally 1.5). The result is a change of extent around the
cursor as seen in Figure 4, another before and after sequence.

This is the simplest zoom that is done by the system. In
Section I we spoke of displaying maps of adequate detail at all
scales. This adjustment of detail is performed automatically by

the GDD whenever a zoom is requested by the system. Thus, after

13

Figure 3. Translation Before and After Sequence

14

Figure 4. Zoom Before and After Sequence

15

the zoom described above is done, the system determines if there
is too much or too little data displayed on the screen for the

current extent value and adjusts the amount of data accordingly.

FEATURE SELECTION

In the introduction we also spoke of the operator having
the ability to tailor the display to his own needs. By this we
‘mean that the operator controls what geographic features are dis-
played on the screen. These features include political boundaries,
roads, rivers, railroads, etc. In order to have an effective
display, the user must be able to turn these features on and off.
In the GDD this is done with a menu.

Format

The menu format is shown in Figure 5 and is displayed on the
screen when the "menu'" function button is pressed. The menu
presents the user with a list of features available for display;
those that are currently displayed contain a number in the ON
column indicating the amount of detail with which the feature is
currently displayed relative to the total amount of data available
for that feature. A low number indicates little detail, a higher
number more detail. The number in parenthesis directly opposite
the features in the list indicates the maximum amount of detail
available. The last line on the screen indicates which of three
operating modes the system is in. These modes are discussed in
the next subsection.

Macro Expansion

In the system there is a macro expansion capability for feature
selection. A feature in the menu list may represent several feature
data bases. For example, the list could contain the word 'boundaries,"
which, when selected, would be expanded to represent the two data

bases - coastline and political boundaries, each of which could

16

MAP FEATURE SELECTION

FEATURE (MAX) ON "OFF
MAP (3) 2

RIVERS (2) l

ROADS (2)

NORMAL MODE MAKE SELECTION

Figure 5 MENU FORMAT

17

also appear separately in the list.

Menu Operation

The user picks a feature for display or deletion by positioning
the cursor opposite the proper feature and beneath either the ON
or OFF column and hitting the ''select" function key. The system will
immediately respond with an acknowledgement. The response could
be an error message displayed at the bottom of the screen. Possible

error conditions are the cursor is not positioned opposite one of
the features or beneath either of the functions or 'a feature is
selected for deletion which is not currently displayed. If the
selection request is allowed, a message 1s displayed at the bottom
of the screen and either an X is displayed in the OFF column if
a delete was requested or a number representing the relative amount
of detail with which the feature will be displayed is inserted
in the ON column. The amount of detail with which a selected
feature will be displayed is determined by the system as a function
of the current extent of the display window.

Before any of the selected data bases are displayed or
erased, the user can correct any of his choices. If an operator
has selected a feature for display and then decides he no longer
wants it displayed, he can select that feature again in the OFF
column and the effect of the previous selection in the ON column
is nullified. The same is true if the user has inadvertently
chosen to delete a feature. Selecting it again in the ON column
will produce no effect on the display of that feature.

Once the user is satisfied with his selection of features, he
hits the '"menu" function key again. This enters the user's choices
and erases the menu from the display screen. Those features de-
leted by the user will disappear from the screen, followed by the

addition of any newly selected features.

18

OPERATING MODES

The GDD will operate in three different modes - automatic,
normal and special. These modes control the degree to which the
user can adjust the amount of data on the screen. Only feature
selection and levels of detail are effected by the mode change.

Mode changes are caused by hitting one of the three function
‘buttons shown at the bottom of Figure 2. The system is initialized
in automatic mode and remains in that mode until a mode key is
pressed. The system stays in a mode until another mode is selected
by the user;

Automatic

Automatic mode allows the user the least flexibility of the
three modes. The user has no control over what features are
displayed. The user can simply zoom and translate. As he zooms
in (or out), features are displayed (or deleted) as predetermined
extent thresholds for each feature are crossed. The amount of
data for each displayed feature is also automatically adjusted
to the extent. If a menu is requested, it is displayed, but only
as a status report on what features are currently displayed; no
feature selection is allowed in automatic mode.

Normal

Normal operation allows the user to select and delete features.
When the user shifts from automatic or special mode to normal
mode, the features that are currently displayed become the selected
features. By using the menu to display or delete features, the
user can change this list of selected features to adapt the display
to his task. As in automatic mode, the amount of detail shown for
a particular feature is a function only of the extent of the
displayed map. Once a feature is selected for display, it will

not disappear from the screen until the mode is changed; it is

19

deleted by a menu request or the extent thresholds for that feature
are exceeded. In the latter case, the feature will be redisplayed
as soon as the extent is again within the maximum and minimum

thresholds for the feature.
Special

Special mode is similar to normal mode in all but one respect.
It locks the displayed features at. their current levels of detail.
No matter how much zooming is done, the amount of data displayed
remains constant. If a feature is selected via the menu in special
mode, the feature is displayed with detail appropriate to the current
extent. However, as long as the system remains in special mode,
no amount of zooming will alter the amount of detall displayed.

If the user shifts from special to either automatic or
normal, detail levels of the currently displayed features are
adjusted on the next zoom or translate request. In the case of
a shift to automatic or normal modes; entire data bases may be
deleted if the extent after the zoom is not within the predetermined
thresholds for that feature.

SYSTEM USE

Fine, the user can control the system and look all around a
map at various scales. How is the map useful to him?

The answer to this question is that the GDD is not the only
process running on the computer as the operator zooms and translates.
When the user requests a zoom or a translate, the GDD responds by
relocating or scaling the map, but the GDD is not the only process
to receive these function requests. Processes controlling fore-
ground displays of, for example, radar or intelligence data, also
translate or scale the displayed foreground data under their control.

These processes, running independently of the GDD and requiring

only the center point and scale of the displayed area, are now

20

being developed under Project 7090. This task of 7090 is investi-
gating methods of summarizing and displaying the large volume of
operational and intelligence data available to a C3 operator.

The map provides a background on which large quantities of data

can be summarized and rapidly assimilated by a viewer. The

location of the data summarized on the map is, of course, controlled
by the center point chosen by the operator. The degree of summar-
"ization will be a function of extent. As the operator zooms in

on an area, the foreground displays will provide more specific

information.

21

SECTION III

GEOGRAPHIC DATA DISPLAY DESIGN

INTRODUCTION

This section is intended to be a brief overview of the
Geographic Data Display System design. The first subsection
.describes the initial geographic data base and how it was prepared
for use by the GDD. With the data base as a given, the needed
user functions are specified in the next subsection. The following
two subsections discuss how the data base must be structured and

managed to implement the user functions.

DATA BASE PREPARATION

The original data base used for this project was World Data
Bank I obtained through the National Technical Information Service.
The data base contains approximately 80,000 latitude/longitude
points in both degrees and radians, outlining the coastline and
political boundaries of the world. For data management purposes
the data base is divided into entities called chains. A chain
is defined as a set of points which, when connected in order,
form part of a geographic boundary. The chains vary in size
from one point for small islands to several hundred for an
intricate portion of coastline, such as the Norwegian fiords.

The chain format is the standard format for all geographic

features in the GDD feature library which have linear characteristics.

22

The data massaging process described below was applied to all
data bases used by the GDD, but the coastlines and boundaries of
World Data Bank I are used as an example.

Only a short outline of the massaging given to World Data
Bank I and the other data bases will be presented. ESD-TR-76-360,
"Geographic Data Base Development ,'" discusses the entire data base
preparation problem and documents the programs needed for this

' process.

First, to obtain a data base of more manageable size, a subset
of World Data Bank I was made consisting of those points falling
within the region bounded by the points (63 N,033 W), (68 N,039 E),
(30 N,012 W), (32 N,021 E). This is (roughly) Europe from Iceland
to Moscow, Algeria to North Cape, Norway. All discussions that
follow deal only with this European subset consisting of approx-
imately 8200 points.

These latitude/longitude points of Europe were projected
into an X,Y plane to form a map. The projection used was a Secant
Conic with two standard parallels to minimize distortion. Scale
error is 0% along the standard parallels (57 N and 41 N) and a
maximum of 1% on the extremes of the map.

Once the subset was established and projected, the individual
points were ranked according to their importance to map detail,
This was necessary since displaying all 8200 points simultaneously
results in wide fuzzy boundary lines on the display screen. At
a scale which enables the entire region of the map to be seen,
many points in the data base are too close to be resolved by
the display into distinguishable points causing fuzziness. A
program was written using an algorithm developed by the Harvard
Laboratory for Geographic Display and Spatial Analysis which ranks
the points according to their importance relative to a visible

feature. Very simply, the trend line length between the endpoints

23

of a chain in the data base is calculated. The distance of each
point in the chain from the trend line is calculated and compared
to a set of tolerances. Those points within a small tolerance
of the trend line itself are considered least important since
they describe a very small feature and are assigned to a low
rank or detail level. The points falling farthest away from
the trend line are considered the most important as they describe
‘a gross geographic feature and are assigned to a high detail level.
Figure 6 shows the process graphically. ESD-TR-76-360 describes
the algorithm in detail.

A ranking of points into these detail levels provides the
capability of displaying maps while controlling the detail and
the resolution by varying the detail level of the points displayed.
The detail level chosen controls the number of points displayed.
For displaying large areas only important points are used; if a small
area 1is displayed points of a lesser rank are also displayed. Thus,
as the scale changes, approximately the same number of points are
always displayed on the screen, but the points represent either
more detail if a small area is being viewed, or less detail and more

boundaries if a larger area is being viewed.

REQUIRED USER FUNCTIONS

The map display system had to have four functions - location,
translate, zoom, and feature selection. Location is defining
what part of the world is displayed. At the present this is an
unimplemented function; the map is located in central Europe and
cannot be varied. The zoom had to provide adequate detail in the
geography for a wide continuous range of extent values. Further-
more, all three functions had to perform quickly to be useful in

a real-time application. For the moment consider only zoom and

translation of a single data base; speed and feature selection from

24

NOTE : —
DISTANCE FROM THE TREND LINE DETERMINES IMPORTANCE

OF A POINT TO DETAIL. POINTS 2 AND 9 ARE LEAST

IMPORTANT AS THEY DEVIATE LEAST FROM THE TREND LINE.
POINT 7 IS THE MOST IMPORTANT SINCE IT IS FARTHEST

AWAY AND THUS DEFINES A LARGER FEATURE THAN THE
OTHER POINTS.

Figure 6 DETAIL RANKING ALGORITHM

25

the feature library will be covered in a later subsection as general-

izations of how a single data base works.

Scaling and Levels of Detail

Any good graphic display system has a scaling function enabling
the user to magnify his displayed image. Consider the effect of
this standard system on a map covering a large area and therefore
containing only important points. As the map is magnified less
.area is seen, but boundaries become more angular and accuracy of
representation is lost as the distance on the screen between
points becomes greater and greater: curves would become sharp
angles. Figure 7 shows a portion of Scandanavia after several
zooms without the addition of detail. To maintain a recognizable
image of Scandanavia a dynamic system would have to obtain more
points from the data base as the map was magnified. Conversely
it would have to delete points as the map was scaled in the opposite
direction.

A compromise between the standard graphics system and a truly
dynamic system was developed. 1In the GDD simple magnification is
used over a specified extent range. When scaling is requested
outside the range specified, the displayed map is replaced by a new
map containing points of a higher or lower detail level, whichever
is appropriate to the zoom direction. This new map is then scaled
by the user until an extent threshold is crossed causing a new
map composed of a new detail level to be displayed. Such a system
provides resolvable detail at all practical magnifications since
a map composed of points of a given detail level is only displayed
over the range of magnification which it can support with adequate
resolution.

Translating and Neighborhoods

The other primary design consideration was a translate function.

This feature enables the user to move any point of the map currently

26

Figure 7. Loss of Context Due to Lack of Detail

27

visible to the center of the display screen. This, too, is a
standard graphics tool, but the map posed an interesting problem.
If a point on the extreme edge of the screen is translated to the
center, half of the screen is left blank, unless points that are
not in the current display are kept in memory, ready for instant
display when a translate is done. This was impossible because of
a memory size limitation. The entire map cannot be kept in
"instant readiness without using a considerable amount of memory.
Again a compromise was reached.

Given a center point of the map and an extent range, a
neighborhood around the center point can be defined larger than
the maximum allowed extent such that the entire neighborhood will
never be displayed as long as the extent range is not exceeded.
The neighborhood is the shaded area in Figure 8a. As the map is
translated within that neighborhood, undisplayed points in memory
are displayed, and displayed points are dropped from the screen
as shown in part b of Figure 8. When a user translates too close
to an edge of a neighborhood, data no longer displayed and farthest
from the displayed map is erased and new data bordering the dis-
played edge is brought in from secondary storage redefining the
neighborhood as shown in Figure 8c. This system allows the user
to have an instant translate without the inconvenience of a

momentary blank screen.

DATA STRUCTURES

With the design considerations outlined above, the problem
of building a geographic display system to give the needed fast
responses reduced to a data structure and data management problem.

Detail Levels and Blocks

To implement the zoom function three complete maps of different

levels of detail were constructed. The first map contains only

28

MAP REGION

a) DISPLAY WINDOW AND NEIGHBORHOOD

E’ b) pISPLAY WINDOW AND NEIGHBORHOOD AFTER
IMMEDIATE RESPONSE TO TRANSLATE

- o
Q' % c¢) DISPLAY WINDOW AND NEIGHBORHOOD AFTER

(\
gl NEIGHBORHOOD HAS BEEN REDEFINED

Figure 8 TRANSLATION WITH NEIGHBORHOODS

29

the 800 most important points of Europe in World Data Bank I for
use with the largest extent, displaying the entire European map
which is approximately 2200 miles across. The 800 point figure is
a practical restriction imposed by the memory requirements of the
graphics system used (this graphics system, PALLET, is described
in the next section). The second and third maps contain 2300

and the entire 8200 points, respectively. It is neither possible
‘nor desirable to display the entire map with these last two

large data bases. Only part of these data bases can be resident
in core at any one time. That part not in the current neighborhood
must reside in secondary storage until the viewing window is
translated near to the edge of the data in memory at which time
the neighborhood is redefined.

A structure was imposed on each of the three maps to enable a
neighborhood around a center point to be selected. Each map was
divided into square blocks. The first map into 9 blocks, the
second into 81 and the third into 729. A block in the first data
base was divided into 9 blocks in the second data base, and a

block in the second was represented by another 9 in the third.

Translation with Blocks

With such a structure it is only necessary to keep a maximum

of 16 blocks around the center point of the display in memory.

As the center point is translated, the required 16 blocks change

but not all at once. The extent ranges over which each level is
displayed prevent the user from seeing more than'a three-block

width or height at any one time. Thus, there is enough undisplayed
data to fill most of the screen when a translate to an extreme
boundary is done. (If magnification is such that less than a three-
block width is visible, there will always be enough data to fill

the screen when a translate is requested.) When a neighborhood

needs to be redefined, blocks not displayed can be erased and new

30

blocks read in from secondary storage. Figure 9 shows this process.
This type of structure allows the viewer an immediate translate
capability; the viewer should not be aware that a data exception

has occurred necessitating references to secondary storage.

Zooming with Blocks

The zoom capability is also instantaneous, with one exception.
Whenever a zoom is requested, the data currently displayed is mag-
.nified accordingly. If a scale threshold has been crossed requiring
a new detail level an entire neighborhood of 16 blocks must be read
from secondary storage. So, though the operator sees an instan-
taneous zoom, there is a delay before he sees a new level of detail.
His operation is, however, not interrupted at any point.

Figure 10 shows the zoom function implemented with blocks and
neighborhoods. In the diagram it can be seen that a new neighbor-
hood is defined from the next detail level when a threshold is
crossed. The blocks of the new higher detail level cover a smaller
geographic area than the previous level but contain at least as

much data.

DATA MANAGEMENT

We have now developed a data structure that provides the
capabilities and flexibility we need. The question now becomes
how to manage a data base with such a structure to provide a user
with fast response when a translate or zoom is requested. Since
it is impossible to give an instantaneous response when a data
exception occurs on a translate or zoom, the user is given an
instantaneous partial response by simply magnifying or translating
the data available in the neighborhood. Any new data is displayed
as fast as it can be retrieved from secondary store. The data

base management scheme used by the GDD uses an indexing system

31

SAOOHYOBHOIAN ANV SXJ0718 HLIM NOILVISNVYL 6 ®inbig

1€ '6¥ - VI

32

1A— 49,434

LEVEL N

LEVEL N + 1|

Figure 10 ZOOMING WITH BLOCKS AND DETAIL LEVELS

33

which eliminates searches and minimizes the number of accesses to
secondary store needed to perform this retrieval process.

Data Organization

To form the blocks with which neighborhoods are composed, a
grid is superimposed over the map area. The geographic data for
one detail level of a feature is placed into the block of the
grid surrounding it. This blocking process is descrited in
.Appendix I. Once divided into blocks, the data is stored on
secondary store in column order (this process is also described

in Appendix I). This is shown in Figure 11 where blocks are
stored in secondary storage contiguously in the order in which
they are labeled. When the blocks are stored in this way, it is
possible to retrieve a single four-block column of a 16-block
neighborhood with one storage access since the four blocks are
stored contiguously. This saves considerable time since it is

the seek time, not the data transfer time, that causes the bottle-
neck in the retrieval process.

Index Organization

An index entry for each block is created and stored in row
order in a file on the storage device. An index is diagrammed in
Figure 12, where the index entries are stored contiguously in
the order shown. Such an ordering allows the index entries of the
four blocks which head the four columns of a neighborhood to be
retrieved with a single storage access. An index entry contains
two pieces of data - the storage address of the block and the
length of contiguous data that must be read starting at this
address to retrieve the data for all four blocks in the column
of the neighborhood headed by the block.

Retrieval Process

Figure 13 puts the entire process together. Given a center
point of the display, the intersection of the grid lines nearest

34

73A37 IvV1i3a VvV ONI¥3QHO ANV 9NIND0T8 || ?unbiyg

18 2L mww ¢M SP og u(»m/‘ o_\tf\m
m.}.\l..u.r.u it alNE -
H\Jou \. 29 nmn v*U\.nm 92 Zl 8

) ..f....n(} rj./< it b
1\» ../\/U\o ~2¢ £ eﬂn :;nu.r%_ L

8 \\)H(omdh IS 2y £E_p 2 Sl 9
\\Wm (rJ e

h%; 89 wm ommﬂh_t 4 € v S

...\{l\,.\rynx\f\al f Cﬁ%
o

B w

y- 99 LS 8¢t 6¢ o¢ 12 21 g

w\ ? \\

m ﬂ wmw Ly 8¢ 62 02 1 2
N | Sl <
\.\mw N v§ a1+ 9y L€ 82 6l Sm_m [

LS

LyE'6y — VI

35

BLOCK # ADDR LENGTH

S VI
_/1,

63

72

8l

Figure 12 ORDERING AND FORMAT OF AN INDEX FOR A DETAIL LEVEL

36

3sva viva
dVA
e

§S3004¥d TVA3I¥L13Y¥ 3SvE Vvivad ¢| nbig

X30NI

"ON3T ‘yaav

dViN

ogv'‘'ev — VI

37

the center point can be determined. This grid point then determines
the upper left block in the neighborhood. This block number is used
as a pointer to the index to retrieve the four index entries for

the four blocks heading the columns of the neighborhood. Since

they are stored contiguously, one access is required. Using the
length in the index, each column can be read from storage. Four
‘accesses are required to retrieve the data for an entire neighbor-

hood.

PARALLEL DATA BASES

The previous discussion of data management explains how a
single detail level of a single feature is managed. The system
does, however, have multiple features selectable by the user, and
each feature has several detail levels. These multiple features
are said to be handled in parallel with one another. That is,
each feature in the feature library is treated as if it were the
only feature data base available to the system. When a function
is requested, each feature in the library is processed identically,
one after the other.

The example in Figure 14 shows how parallel data bases are
processed and how the correct detail level of each parallel
data base is chosen. In Figure 14 three feature data bases are
shown, each with several levels of detail. For each detail level,
a range of extent over which that detail level provides adequate
resolution is defined. (The ranges for detail levels of a feature
overlap to prevent thrashing back and forth if a user zooms in
and out around a threshold.) The vertical line in the figure
shows the current extent of the display. The detail level of the
features with which this line intersects is the one that should
be displayed at this extent. It should be noted that there is no

38

NOI1J33713S 3SvE Viva 137vdvd ¢+l

ainbiy

IN31X3
-
" “ 2AY
} i IAY
] pHY
o syy
A Zyy
— 14y
f i €9
} - 29
} o)
SH3AIY SAvoNIvY S1SV0D
Yy e
ZAY
cyY
22
2uy
I AY
I ¥y 12
NO 440 NO

Z2eb'6v ~ VI

39

relationship between detail levels of different features. The
fact that detail level 1 of one feature is displayed does not
mean that another feature must be displayed at level 1, or, for
that matter, displayed at all. Finally, before being displayed,

a "'user interest vector,"

shown along the top of the figure, is
checked to see if the features allowed at this extent are wanted
by the user. For those that are selected by the user, the file
‘numbers of the data file and index file and the number of blocks
into which the detail level has been divided are passed to the
data management system. Thus, the data management system treats
all detail levels and features the same; it simply retrieves the

index entries and actual data from different files.

40

SECTION IV

IMPLEMENTATION TOOLS

INTRODUCTION
The GDD was implemented using 7090's existing distributed
processing computer system. To support this system several large
software packages were written: a message processor to support
"the distributed processing, a graphics display system, and a file
management system. These programs were used to implement the GDD.
Below, the system architecture is presented followed by a

brief summary of each of these software packages.

SYSTEM ARCHITECTURE

The 7090 computer facility is a two-computer distributed
processing system. Figure 15 is a schematic of the system. The
Interdata 70 (I-70) is the display processor driving a RAMTEK
digital color television interface. It has 64K of memory and
shares a 600-line~a-minute Data Products printer and a 200-card-
per-minute card reader with the Interdata 4 (I-4). The I-4 with
its 64K of core is the applications machine connected to a Vermont
drum with a four-megabyte capacity. The two machines communicate
with each other via a Bell 201 communications interface running at
25K baud. Both machines run the Interdata BOSS 4B operating
system and can operate totally independent of one another. The
actual display devices attached to the RAMTEK are a Conrac TV
monitor and a large screen, ADVENT, projection TV. A trackball
and function key pad are also connected to the RAMTEK.

Design Philosophy

The design philosophy of this architecture is summarized

here. A large Command, Control and Communication system has many

41

AL1T10Vd ¥3LINAWOD 060Z 40 JILVNIHOS GI 9anbig

» 4 ' ¢
d434v3y
M3ILNINd
gyvd
L 4 -H| @
Q¥vogA3IN
- TIVENIVHL NILWVN
3LABYO3N ¢
Al d¥0102
JOVHENOD
3dA13731 ndd Ndd 3dA13731
el . »
GE — NSV . =7 30V4¥3ILNI 'W0OD 102 oL~-1 cc - ¥SV
W3N L EL]
M+9 v 9

42

processes running concurrently with a need to communicate with

each other. Since a process often needs to send a message simul-
taneously to more than one process, some of which are unknown

to it, it makes sense to have a broadcast system that is receiver
oriented. That is, a message is sent by putting it on a com-
munications bus where it can be examined by each process running

on the system. The process can either use the message or ignore it.
‘"The receiver decides what messages it wants, not the sender.

Such a system cuts down on message traffic and relieves the
application programmer of communications overhead.

In our system, the I-70 is a display processor running an
operator display station. The I-4 is an application machine which
handles the geography for the system. The data link substitutes
for a bus, though the bus-receiver-oriented approach is simulated
by the Message Processor, one of the software packages mentioned

above.

MESSAGE PROCESSOR

The Message Processor program, MP, simulates the bus com-
munication system discussed above. A copy of MP resides on each
machine and acts as the system interface to the 201 communication
device.

When an application program which will use MP is designed,
the programmer must decide what information will be broadcast
throughout the system by MP. This information is usually of
global importance in nature, such as the center point and extent
of the displayed map in the GDD. Once this is decided, a format
for the messages containing information is formed and a type
assigned to each message. The programmer can then write the
different routines of the system, knowing that no matter how many

routines want to receive a message, he only has to specify the

43

type and send the message once. If a routine wants to receive a
message of a certain type, the programmer must only make an entry
in an MP table to that effect.

At initialization, the tables are constructed in MP identifying
which programs want to receive what message types and on which
machine each receiving program is resident. When a message is
sent, the user calls MP with two arguments - the message and the
‘message type. These two arguments are first sent to the MP on
the other machine. The two MP's then check the message type against
their internal tables. When a match is found in the table, MP
invokes the program associated with that matched type. Each
program is allowed to run to completion, at which time the next
program in the table which wants to receive that message type
is invoked. Each program thus appears to be continually examining
a bus containing the message stream and picking off only the ones
necessary for its operation.

It should be noted here that this implementation permits
true distributed processing. There is no one large machine in
control with several satellites; control is distributed between
both machines, each doing its separate task independent of the
other. It also should be noted that each machine is not dedicated
to a single task; several processes are resident on each machine.
The execution of these processes is controlled by MP as a function
of the messages received and which process or processes want to
receive that message. If several processes running on one machine
degrade performance, the situation can be improved by adding
another processor onto the bus. The theory of the bus operation

puts no limit on the number of machines running in the network.

GRAPHICS PACKAGE

PALLET is a sophisticated graphics display program which

44

provides the user interface to the RAMTEK digital TV driver.

Through a series of subroutine calls the user can define images of
points, lines, arcs, blocks of color and characters. Once defined,
these images can be stored on drum or displayed on the RAMTEK,

Any image stored on drum can be used along with points, lines, arcs,
blocks and characters to form another imagé, which also may be
displayed or stored. With the ability to refer to images or

‘parts of images by name, change color, erase images and control
cursor position and a function key pad, PALLET becomes a very
versatile interface to the RAMTEK.

Instancing

PALLET is designed around the graphics concept of instancing.
A graphics instance is a geometric form that can be used repeatedly,
either in a single image or in many images. A common image is
formed with lines, points, arcs, blocks and characters given a
name and stored in secondary store. This image can now be an
instance and used several times to form another image by recalling
it by name. For example, the instance could be a representation
of a window. 1In the construction of an image of a house, the
instance of the window would be used several times, the only
difference being the position of the window in the image of the

house each time the instance was used.

Coordinate Systems

Position of the window in the house opens the Pandora's box
of coordinate systems within PALLET. When an image is initially
defined with an OPEN command, the coordinates of the lower left
and upper right corners of the space for the image are given.
This establishes the coordinate system of the display space for
that image. When one of the primitive forms, lines, points,
blocks or characters is placed in an image, it is positioned in

the image according to the coordinate system with which the image

45

was opened. If any of the X, Y coordinates of the points of the
primitive form fall outside the display space, the forms are
clipped off at the boundary. Now, when one includes an instance,
that is, a previously defined image, into another image, one
specifies where in the coordinate system of the new image the
lower left and upper right corner of the display space of the
instance should be placed. This nesting of the coordinate systems

'is shown in Figure 16.
Use by GDD

As an example of how PALLET coordinate systems work, let's
look at how the GDD uses PALLET. PALLET is used by the GDD to
display both the menu and the map. The menu is a straightforward
application, declaring a display space and positioning characters
within it. When the select function button is pressed, the
cursor position is read. Since the position of items in the menu
is known from when the image was constructed, the cursor position
determines which feature and function have been selected. The
map, on the other hand, is a bit more complex and more useful
for tutorial purposes.

An image called '"world" is opened from the lower left (0,0)
to the upper right (511,479). (This coordinate system was chosen
because the RAMTEK raster is 479 lines by 511 dots.) Into this

image is included an image called "map."

The display space of
"map" is defined to be the corners of our European map given in
the coordinate system of the projected map. The coordinates are
given such that the corners of "map" fall within the "world"
display space to give the proper initial center point and extent.
If any of our map data which is in projected coordinates is ﬁow
displayed in the '"map" display space, it will appear in the
correct position relative to any other piece of map data since the
coordinate systems of the projected map and the display space of

"map" are identical.
46

(10,10)

OPEN (WINDOW, 0., 0., 10.,10.)

(0,0)
(100, 100)
OPEN (HOUSE, 0.,0.,100., 100.)
(0,0)
(100, 100)
55 (10,10)
INCLUDE { WINDOW, 50.,40.,65.,55.)
%9 (0,0)
+—t=
10,0} 50 65

Figure 16 INCLUSION OF ONE IMAGE INTO ANOTHER

47

Implementation

PALLET has been implemented using both machines, a fact
dictated by the system configuration. The part of PALLET con-
trolling the display, interfacing directly with the RAMTEK, is
resident on the I-70. Because of the use of secondary store for
graphics instancing, that part of PALLET which constructs images
is resident on the I-4. The two parts communicate via MP. Once

.an image is constructed and designated for display, it is sent
out on the bus and received by the I-70 portion of.PALLET, where
it is processed and turned into a display list with the appropriate

translation and extent applied to it.

FILE MANAGEMENT PACKAGE

The File Management Package (FMP) handles the storage and
retrieval of data for PALLET. Through a system of subroutine
calls to FMP, PALLET can store data in secondary store in a
hierarchical file structure.

Except for opening the physical file used by FMP and initial-
izing FMP when the GDD is executed, FMP is transparent to the

GDD. No further description is necessary.

48

SECTION V

IMPLEMENTATION DESIGN OF THE GDD

INTRODUCTION

The Geographic Data Display program was designed as six
separate modules written mostly in FORTRAN: Menu, Function Request
'Handler, Data Exception Handler, Data Base Management, Mode Change
and Initialization. The Menu module allows the user to select
and delete features with a menu. The Function Handler processes
zoom and translate requests at the top level and passes the new
center point and scale to the jata Exception module. This module
then determines what, if any, detail levels and neighborhoods
need changing. The Data Base Management module, written mostly
in assembler, retrieves the new neighborhoods designated by the
Data Exception module or the Menu module and passes the data to
PALLET. The Mode module handles the mode change functions and
Initialization sets the system for operation.

This section is designed to serve as top level program
documentation. First, the communication between modules will be
defined, and then the function and implementation of each module
will be discussed separately. Individual subroutines are documented

in Appendices V and VI.

MODULE COMMUNICATION

The six modules of the GDD communicate via common variables
and MP. Within GDD, MP is used only between the Function Request
Handler and the Data Exception Handler. This is necessary since
the Function Request Handler has been implemented on the I-70 to
enable faster response to the user. The other five modules all
reside on the I-4 and only communicate with each other through the

labeled common COMMUN. Figure 17 shows the interconnection of

49

ZOOM MENU MODE
TRANSLATE FUNCTION FUNCTION
BUTTONS BUTTONS BUTTONS
MP MP
Reaue st ueny ors
M MODULE
HANDLER oRULE .
MP COMMUN
COMMON
COMMUN COMMUN
DATA COMMON DBM COMMON INITIALIZATION
EXCEPTION MODULE MODULE
MP
PALLET

Figure 17 INTERNAL COMMUNICATIONS OF THE SIX GDD MODULES

50

the six GDD modules.

When a zoom or translate request is made the Function Request
Handler broadcasts, via MP, the new center point and/or extent.
The Data Exception module receives this message, stores the in-
formation in the CURSTA labeled common (all commons are documented
in Appendix IV), and determines what new data need to be added
and what data need to be deleted. These decisions are recorded

"in the SELECT and DELETE arrays of the COMMUN common. Each
geographic feature available to the system has an entry in these

two arrays. If a data base needs to be displayed or a detail

level needs to be changed, the proper entry in the SELECT array

is set equal to the detail level at which it should be displayed.

If a currently displayed feature needs to be deleted the appropriate
entry in the DELETE array is set non-zero. The relationship
between entries in the arrays and feature data bases is discussed

in Appendix IV.

The Menu module works in a similar manner. When the operator
selects or deletes a feature, the proper entries in SELECT and
DELETE are changed.

After either the Data Exception module or the Menu module
have set COMMUN, the Data Base Management (DBM) module is activated
by a subroutine call to MDISP. The DBM module then sends erase
commands to PALLET for those features whose DELETE entry is non-
zero and retrieves data from secondary store for those features

whose SELECT entry is non-zero.

MENU MODULE

The Menu module processes all selection and deletion requests
made via the menu. To do this, it makes heavy use of PALLET for
displaying the menu and for responding to and receiving the user

requests. Table I contains a list of the subroutines in the Menu

ol

Table I

Module Subroutines

FUNCTION DATA DATA BASE
MENU REQUEST HANDLER EXCEPTION MANAGEMENT
CHARLV CRTOMP AUTOFZ ALLOC,DEALOC
CLEVEL* ERMSG AUTONZ CLMERS
CURPOS NEWCEN CLEVEL* ERMSG
DBPOS SETMSG CURSTA GRDCEN*
MENUUP STATIN* GRDCEN* INMVE
MESLCT TRANTP MTRANS MDISP
NAME* ZMINTP ZMTRNS MSEND
RESPON ZMOUTP NAME*
SETSTA ZOMTOP REDSND
WRTCHR RETREV
RINDEX
RPCOL
SETBF
SETINX
SETITM
TOPLFT

* Subroutines shared by one or more modules.

52

MODE

INIT

ATOFFS
AUTONS
STATCS

IMPTAB
INIT
REDCOM
STATIN*

module. MENUUP and MESLCT are two main line routines called
when the proper function buttons are pressed.

The following discussion is in two parts. Under MENUUP the
generation and display of the menu is discussed, followed by a
description of the entry of the completed menu. Under MESLCT
selection and deletion of a specific menu entry are discussed.

MENUUP

When the menu button on the function pad is pressed, the
MENUUP subroutine is called to display the menu for use by the
operator (refer to Figure 18). MENUUP first displays the basic
menu stored in the PALLET file when the system is initialized
(see Appendix II). It then creates an image called STATUS.

MENUUP adds to the STATUS image the detail level of each of the
features in the menu currently being displayed. A message stating
the mode of the system is also included in STATUS before it is
displayed using PALLET. If the mode is normal or special the
variable MENU is set to allow the user to select and delete
features, and MENUUP returns. If the mode is automatic, MENUUP
simply returns since no feature selection is allowed in automatic
mode.

After the menu is brought up and the variable MENU is set
to allow selection, the next time MENUUP is called by a function
button request, the short procedure which enters the user's menu
selection is executed. Here, the menu is cleared from the display,
and the Data Base Management module is called via a call to MDISP.
MDISP will examine the COMMUN common as set by the MESLCT routine
of the Menu module to determine what features need to be displayed
and deleted.

MESLCT

MESLCT is the routine invoked by pushing the select function
button; it is flowcharted in Figure 19. This routine records

53

MENU

FUNCTION

KEY

YES
MENU = OFF
NO

DISPLAY
MENU IMAGE CLEF:RO:ENU
STORED ON .

DRUM

CALL
DATA BASE

CONSTRUCT AND

DISPLAY STATUS
IMAGE

MENU = ON

RETURN

Figure 18 FLOWCHART OF MENUUP OF MENU MODULE

54

SELECT
FUNCTION KEY

YES
RETURN

NO
CALCULATE
LINE AND
FUNCTION
SELECTED BY
CURSOR
RETRIEVE
INDICES OF
DATA BASES
REPRESENTED
BY LINE OF
MENU
I
DISPLAY SELECT YES | DISPLAY
ERROR FUNCTION ERROR
MES SAGES ? MESSAGES
CALCULATE
DETAIL LEVEL DELETE
AS FUNCTION =
OF CURRENT ON
EXTENT
SELECT
DETAIL
LEVEL
g :
MACRON. NoO
" YES
1
¢ RETURN
<

Figure 19 FLOWCHART OF MESLCT OF MENU MODULE

55

the features selected and deleted by the user in the COMMUN
common and writes responses to the display screen each time the
select function button is pressed. If the variable MENU is not
set by MENUUP to allow user selection and deletion, MESLCT simply
returns, resulting in a no-op.

On entry, MESLCT first determines which function the user
has positioned the cursor beneath and also opposite which feature

"of the menu. An error message is displayed if the cursor is not
aligned with either function or any of the features. If there
is no error, the program is set up to process the macro expansion
of the feature selected. This is done by setting up a loop
which will be executed once for each feature in the expansion.
The result i1s that each feature in the expansion appears as if
it was selected separately.

If a feature was selected for display, several abnormal
conditions are tested for - the feature has already been selected,
it is currently displayed, or it has also been selected for
deletion. In any of the three cases, a response 1is displayed.

In the latter case, the entry in the DELETE array of the COMMUN
common is turned off, resulting in a no-op for that feature. If
none of these conditions exist, the subroutine CLEVEL determines
at which detail level the feature should be displayed. The
proper entry in the SELECT array of the COMMUN common is set
equal to this detail level, a response is made to the user, and
the detail level displayed in the menu.

The delete function works in an analogous fashion. A test
is done to see 1f the feature i1s not currently displayed or 1if
it has previously been selected for display. In either case an
error message 1s displayed. In the last case SELECT is set to
zero so that the feature will not be displayed. If no errors

exist the DELETE entry for the feature being processed is set

56

non-zero. An "X" opposite the feature is displayed in the menu

and a response message given to the user.

FUNCTION REQUEST HANDLER

The Function Request Handler is invoked by pressing either
the translate or zoom buttons. Its purpose is to perform an
immediate zoom or translate on the data available, calculate a
‘new center point and extent, and broadcast these parameters to
the other processes in the system. To provide as fast a response
to a user request as possible, the module 1is resident on the
I-70, along with the PALLET routines that do translate and zoom.

Table I contains a list of the subroutines in the Function
Request Module; a flowchart of the module is shown in Figure 20.
ZOMTOP and TRANTP are the two mainline routines, the others are
utilities used by one or both of the functions. The following
discussion will be divided into two sections - one on zoom and
one on translate.

Zoom

ZOMIOP is the mainline routine for both zoom in and zoom out
requests. The direction of the zoom is determined by the magnitude
of FAC, a calling parameter to ZOMIOP. When the zoom in button
is pushed, the ZMINTP routine is invoked. This routine simply
calls ZOMTOP with an appropriate value for FAC. For a zoom out,
ZMOUTP is invoked, and ZOMIOP is called with a value for FAC that
is the inverse of the value used for a zoom in. Thus, though
ZOMIOP is the mainline routine, it is not directly invoked by the
push of a function button.

Initially, ZOMIOP sets up the new center point and extent,
message to be broadcast to the other processes in the system.
This involves converting the absolute cursor position to map

coordinates, calculating the new center point and extent, and
storing these values in the CURSTA array.
57

ZOOM (N ZOOM OuUT
FUNCTION FUNCTION
KEY KEY
ZMINTP ZMOUTP
SET SET
ZOOM IN ZOOM OUT
MAG FACTOR MAG FACTOR

lZOMTOP

SET
CURRENT
CENTER POINT
AND EXTENT
MSG

CALL PALLET
TO SCALE
AVAILABLE
INEIGHBORHOODS

BROADCAST
CENTER POINT
AND EXTENT

MSG

DATA
EXCEPTION
MODULE

TRANSLATE
FUNCTION
KEY

SET UP
CURRENT
CENTER POINT
AND EXTENT MSG

CALCULATE
X AND Y
DISTANCE FOR
TRANSLATION

CALL PALLET
TO TRANSLATE
AVAILABLE
NEIGHBORHOODS

BROADCAST
CENTER POINT
AND EXTENT
MSG

DATA
EXCEPTION
MODULE

Figure 20 FLOWCHART OF FUNCTION REQUEST HANDLER

58

Once the message is set, the PALLET routine SCALE is called
to perform an immediate zoom on the neighborhood of data available.
The message is then sent via MP directly to the CURSTA routine of
the Data Exception module and to any other process that wants
to receive it.

Translate

TRANTP is invoked directly by a function key to handle a
.translate request. It, like ZOMIOP, sets the broadcast message
first. It then calculates the distance the current display must
be translated in the x and y directions. The PALLET routine TRANS
is called to do this immediate translation. The new center point
of the map is established as the cursor position, and the center
point and extent message are broadcast. Again as in zoom, it is

sent directly to the CURSTA routine of the Data Exception module.

DATA EXCEPTION MODULE

.
The Data Exception module determines which features currently
displayed need a new neighborhood of data or a new detail level.
It is entered only through the reception of a center point and
extent message by the CURSTA routine, which in turn calls the
mainline routine of the module, ZMIRNS. ZMTRNS examines all data
bases for the possibility of a detail level change or a new neigh-
borhood. The algorithms for detail level change are different
for each of the three operating modes: automatic, normal and
special. The following discussion begins with a brief explanation
of the entry into the module and is followed by descriptions of
the different zoom algorithms. It concludes with the translation
algorithm. Table I contains a list of the subroutines included in

this module; Figure 21 is a flowchart of the module.

59

RECORD CURSTA
CENTER POINT

CENTER POINT 8
AND EXTENT
EXTENT MSG MP IN CURSTA
COMMON

ZMTRNS
YES

EXT_ENT

= e
NEW EXTENT

SET SELECT
AND DELETE
ARRAYS FOR ANY -
FEATURE NEEDING
DETAIL LEVEL
CHANGE

AUTOMATIC

SET SELECT
AND DELETE
ARRAYS FOR ANY |—&
USER SELECTED

FEATURES

MODE
NORMAL

NO

NO DATA BASE

——< NEED NEWD>

NEIGHBORHOOD
YES

VERTICAL YES SET SELECT

<TRANSLATE>——+ AND DELETE
COMPONENT ARRAY

N

YES MORE
DATA BASES

TO CHECK

(MDISP)
DATA BASE
MANAGEMENT,
MODULE

1A-49,356

Figure 21 FLOWCHART OF DATA EXCEPTION MODULE

60

Module Entry

When a zoom or translate request is made the Function Request
Handler broadcasts a message containing the new center point and
extent and the previous center point and extent. The CURSTA
routine of the Data Exception module receives this message and
stores this global data in the CURSTA common for use by any routine.
When the data is stored, ZMIRNS is called to determine new detail
‘levals and neighborhoods.

Automatic Mode Zoom

If the system is in automatic mode, ZMTRNS calls AUTONZ to
determine what features should be displayed and at what detail
level. The AUTONZ algorithm is extremely simple. For each data
base available to the system a call is made to the CLEVEL routine.
This routine, using the predetermined thresholds for the detail
levels of the data base being checked, calculates and returns
the detail level at which the feature should be displayed. If the
level returned is equal to the current level of the feature, nothing
is done. Otherwise, the correct entry in SELECT is set equal to
the returned level, and the appropriate entry in DELETE is set
non-zero to force an erase of the current neighborhood of that
feature. The procedure is repeated for each feature. Note that
the question of whether a feature is displayed or not is strictly
a function of the current extent and the predetermined thresholds
of the detail levels of that feature.

Normal Mode Zoom

If the system is in normal mode, ZMTRNS will call the AUTOFZ

routine. This routine functions in a manner analogous to AUTONZ
with one addition. 1In AUTONZ the detail level of each data base
is checked on every zoom. In AUTOFZ, only those data bases that
have been selected are checked. A feature is considered selected

if the location in the AUTOFZ array associated with it is non-zero.

61

This location is set when either the feature is selected or deleted
by the operator using the menu, or when it comes within or falls

out of its display range in automatic mode.
Special

In special mode no detail levels are changed. Thus, if the
system is in special mode, ZMIRNS ignores detail level changes
and calls the translation routine immediately.

Translation

After all potential detail level changes have been examined
by ZMTRNS, MTRANS is called to determine if any neighborhoods
need to be altered. Those features that had a detail level
change require no checking, since their new neighborhoods will
be calculated according to the new center point. In the case
where the detail level of a feature was not changed, or where
ZMIRNS was invoked by a pure translate request, neighborhoods
must be checked for horizontal and vertical translation components.
Horizontal translation requires the change of one or two columns;
vertical translation requires an entirely new neighborhood.

For each data base, MTRANS uses the routine GRDCEN to determine
the point of the grid used to divide a data base into blocks
closest to the center point of the displayed map. This new grid
point is compared to the grid point used to define the currently
displayed neighborhood. 1If any change exists in the y coordinate,
a vertical change has occurred, the entire neighborhood must be
replaced and the proper entry in SELECT is set to the current
detail level. The DELETE entry is also set non-zero.

If there is only a change in the x coordinate of the grid
points, the RPCOL routine is called to invoke the Data Base
Management module. This is a special entry into this module

which only replaces one or two columns of a neighborhood at a time.

62

After all features have been checked, MTRANS calls the Data Base
Management module via MDISP to replace all neighborhoods.with a

vertical translation component which have been tagged in the SELECT
array of the COMMUN common by ZMTRNS.

DATA BASE MANAGEMENT

The Data Base Management module is responsible for retrieving
data from secondary storage and displaying it, and erasing already
displayed data from the display screen. It has twé entry points -
one for retrieving an entire neighborhood, and one for replacing
only one or two columns of a neighborhood. These two entry points
are MDISP and RPCOL, respectively. Both use the support routines
listed in Table I and work in a very similar manner. The following
discussion is in two parts - MDISP and RPCOL.

MDISP

MDISP is the Data Base Management module entry point which
examines the COMMUN common, set by either the Menu module or the
Data Exception module, to determine which data bases to delete
from the display and which to retrieve and display. It first
checks for any necessary erasures, and then proceeds to calculate,
retrieve and display new neighborhoods, as diagrammed in Figure 22.

Each entry in the DELETE array of the COMMUN common is
checked. If an entry is non-zero the CLMERS routine is called to
make four entries in the erase table, one for each column of the
neighborhood. After all data bases have been examined, the erase
array is sent to PALLET on the display processor and the delétion
process is completed.

Now each entry in the SELECT array of the COMMUN common is
checked for a non-zero value. This non-zero value is the detail

level at which the data base is to be displayed. For each

63

DATA EXCEPTION
MENU MODULE MODYLE

ERASE ALL
DATA BASES
FLAGGED IN
DELETE ARRAY

NO

YES

CALCULATE
BLOCK
OF TOP LEFT

BLOCK IN
NEIGHBORHOOD

:

READ INDEX
FOR
NEIGHBORHOOD

.

READ DATA
FROM DRUM
AND SEND 4
COLUMNS TO
PALLET

CHECKED

RETURN

1A-49,357

Figure 22 FLOWCHART OF MDISP ENTRY INTO DATA MANAGEMENT MODULE

64

feature selected, the center point of the neighborhood is cal-
culated and used by the TOPLFT routine to determine the top left
block of the 16 block neighborhood. This section is used by
RINDEX to read the proper index entries from secondary store.

Once the index is read, a core buffer is allocated large enough

to hold the largest column of data as indicated by the index. The
REDSND routine then uses each index entry to locate and read a
.column of data from secondary store. A PALLET image header is
added to a retrieved column, and it is sent to PALLET to be dis~-
played. This retrieval procedure is repeated once for each column
in the data base. Once a neighborhood is displayed, the next
feature selected is processed.

RPCOL

RPCOL is similar to MDISP in function except that it only
works with one feature at a time. Like MDISP, it first erases
already displayed columns, and then retrieves and displays the
new column, or columns.

RPCOL first calculates which one or two columns are being
replaced - the left~most, the right-most or the left two or the
right two. The CLMERS routine is invoked to enter the proper
columns in the erase array, and the array is sent to PALLET
where the data is erased.

The index for the proper neighborhood is read. The retrieval
process outlined in the MDISP section is now executed once for
each column of the neighborhood not currently displayed. RPCOL is

diagrammed in Figure 23.

MODE

The Mode module changes the mode of the system when either
the automatic, normal or special function button is pressed.

The module consists of only the three short routines listed in

65

1A- 49,349

DATA EXCEPTION
MODULE

CALCULATE WHICH
COLUMNS OF DATA
BASE TO ERASE

!

ERASE PROPER

COLUMNS

;

ORDER REMAINING

COLUMN IDENTIFIERS

'

CALCULATE BLOCK #
OF TOP LEFT BLOCK
IN NEIGHBORHOOD

!

READ INDEX FOR

NEIGHBORHOOD

;

READ DATA FOR
MISSING COLUMNS
FROM DRUM AND
SEND TO PALLET

RETURN

Figure 23 FLOWCHART OF RPCOL ENTRY INTO DATA
MANAGEMENT MODULE

66

Table I. Each routine works exactly like the other two. When

a mode function key is pressed, the respective routine is invoked
which then sets the MODE variable of the CURSTA common to the
proper value. The proper value is a 1, 2 or 3 depending on

whether the mode selected is automatic, normal or special.

INITIALIZATION

The Initialization module prepares the system for execution.
Its four routines are listed in Table I. Executioﬁ of the module
is straightforward. Common variables are initialized by the
REDCOM routines which read a tape made by the SETUP routine
described in Appendix II. It initializes MP and FMP by setting
up buffers and designating the file containing the menu image.
It then assigns to the proper buttons the functions which are
to be invoked when a function key is pressed. The initial center
point and extent are sent via MP to the STATIN routine of the
Function Request Handler to initialize the CURSTA common array on
the I-70 side of the system. The Data Base Management module
is finally called to display the initial data bases.

67

APPENDIX 1

DATA BASE CONSTRUCTION PROGRAMS AND PROCEDURES

INTRODUCTION

In order to run the GDD, geographic data bases have to be
stored on secondary store. This appendix gives a brief description
'of, and operating instructions for, the two programs needed to

store prepared data bases on the Vermont drum.

DATA BASE CONSTRUCTION

Once a magnetic tape containing geographic data in chain
form has been put through the detail analysis and editing process
described in ESD-TR-76-360, "Geographic Data Base Development,' it is
ready to be stored on drum. (The format of one of these tapes and
the programs used to manipulate the data are all fully described in
ESD-TR-76-360.) This storage process for a single detail level of
one feature is done in two steps by two programs — BLOKS and IMAGE.
BLOKS divides a data base into the number of blocks specified by the
user for that detail level, and IMAGE stores each block on drum and
constructs an index.

BLOKS

The BLOKS program divides the chains of an edited tape of
geographic data into the blocks which will be used to construct
neighborhoods. Input to the program is (1) a geographic data
base tape which has had each point of a chain assigned a detail
rank,(2) the rank of points which the user wishes to extract
from the tape for this detail level of a feature and(3) the
number of blocks into which this detail level should be divided.
The program then lays a grid over the map and examines one chain

at a time. A chain that does not fall entirely within a block

68

is broken up into smaller chains which do lie entirely in a
single block. Only those points of a chain that have the same
detail level or less than the one specified by the user are kept
on the output tape. This output tape is a list of these new,
smaller chains sorted by blocks. The blocks are ordered on the
output tape according to columns, as dictated by the data base
_management scheme described in Section III. This process is
repeated once for each detail level of a feature. By varying the
detail level rank specified and the number of blocks, the number
of points in the data base can be altered, and the geographic

area covered by a single block can be changed.

BLOCKING ALGORITHM

The following algorithm is used by BLOKS to create the

blocked output chains.

1. Input chains from the data base are processed one point
at a time.

2. A grid block is assigned to the first point of a chain
using the grid dimensions.

3. A chain is started in the assigned block, and the first
point is filled into the chain.

4. Points are then read and copied into the grid block
until either an end of chain mark is found (in which
case the mark is written to end the chain in the current
block and processing for the next chain is begun), or a
point falls outside the current block.

5a. When a point falls outside the current block, the pro-
cedure described below is used to generate a block entry
or exit point each time a grid line is crossed by the
chain. (See Figure 24.)

69

CURRENT
POINT

O>—
-p
L= - —}——LAST BLOCK
~
4—‘-1;\—.
~
> - |
A ~e LAST POINT FILLED IN

CROSSED BLOCKS

GENERATED ENTRY AND EXIT POINTS

ARE |INDICATED 8Y THE SYMBOL o

ARROWS (l—') INDICATE INTO WHICH
BLOCK(S) A POINT IS FILLED

Figure 24 GENERATED ENTRY AND EXIT POINTS FOR CROSSED BLOCKS

1A - 49,433

ARROWS INDICATE INTO WHICH
BLOCK A POINT IS FILLED

Figure 25 ASSIGNMENT OF SINGLE -~ POINT CHAINS

70

The equation is found for the line connecting the current
point (the point falling outside the current block) with
the last point that was filled into a block.

The point at which this line crosses the boundary of the
last block, the boundary crossing point, is filled into
the block, and the chain is ended in this block.

A new chain is started in the block that has been entered,
and the boundary crossing point becomes the first point
in the new chain. .

If the current point is in the crossed block it is now
filled in as the second point in the new chain, and the
next point is read as usual.

If the current point is outside the crossed block an

exit point is generated for the block using the procedure
in a and b above and the chain ended.

Entry and exit points are generated in this way for all
blocks crossed in reaching the current point; i.e., until

the current point falls into a crossed block.

A special procedure is used to handle input points which happen

to fall on a boundary between grid blocks. Such a point will be

referred to as a '"boundary point."

6.

7a.

When a boundary point falls outside the current block it
is treated as a normal point for generating entry and
exit points for crossed blocks. The boundary point is
considered to be outside the block only if it is not on
a boundary of that block.

End of chain point -- If the boundary point is on a
boundary of the current block and is the end of an input
chain it is filled into the current block and the current

chain is ended.

71

b. Mid-chain point -- If the boundary point is on a boundary
of the current block and does not start or end a chain,
the point is first filled into the current block. A
look ahead to the next data point is then done to deter-
mine which block the input chain will enter.
If a new block is entered, the chain in the current block
is ended and the boundary point is used to start a new
chain in the block being entered. If the next point
continues in the current block, the chain 1s processed
ndrmally.

c. Start of chain -- If the boundary point is on a boundary
of the current block and is the start of an input chain,
a look ahead to the next data point is done to determine
which block the chain enters. A chain is started in
this block using the boundary point as its first point.

d. Single point chain -- If a boundary point both starts
and ends an input chain it is filled into the block
assigned it by the block-assigning routine. This routine
assigns a boundary point to the right or upper block
depending on whether a vertical or horizontal grid line
is straddled. A vertex point (one falling at the inter-
section of four blocks) 1is assigned to the upper right
block. This rule is used unless it causes a point to
fall outside the map box, in which case the point is
assigned to the lower or left block. (See Figure 25.)

Operating Instructions

To run BLOKS two control cards must be supplied using the

following formats:

72

Card #1 lower left columns 1-8

(corner points X coordinate (decimal in col. 3)
of map box)
lower left columns 10-17
Y coordinate (decimal in col. 12)
upper right columns 19-26
X coordinate (decimal in col. 21)
upper right columns 28-35
Y coordinate (decimal in col. 30)
Card {#2 number of blocks columns 1-3
along the longer (integer-right justified)
side of box

detail level at columns 5-6
which to select (integer-right justified)
points

The load module for BLOKS is stored on tape MMC 001l.
To run BLOKS this tape should be assigned a logical unit (6)
and loaded using the operating system load command :

LO 6

The following units should be assigned to the appropriate

devices: [nGiCAL UNIT

01 card reader for control card input

02 output tape device

03 printer

04 drum file 4 - used for temporary storage
of output data points

05 teletype

06 input tape device for map data base

BLOKS can now be started as follows:
ST 2E00

The control cards will be read first.

Then the teletype will ask:

73

ENTER 'T' OR 'B' FOR TOP OR BOTTOM OVERHANG
This means that the map area, defined by the four coordinates on
the first input card, is not square. The longer side of the
rectangle has been divided into the number of blocks requested
on the second control card. The block overhang requested is the
direction in which the shorter side of the map should be extended
.to allow an integer number of blocks with the same dimension as
the blocks in the longer direction. The blocks are thus made
square, having a side dimension equal to the lengtﬂ of long side
divided by the number of blocks requested by user.

The grid dimensions and detail level to be used are now
written to the printer. Then the data points are processed and
totals for points, K and chains read in from the input tape and
totals for points and chains actually selected are printed. Finally,
the output tape is created and the table of blocks and the missing
block messages (those blocks containing no data) are written on
the printer.

IMAGE

From the output tape of BLOKS, the IMAGE program creates
the drum file of blocks stored in column order and the row ordered
index file to those blocks. Since each tape output by BLOKS
contains data for only one detail level of a feature, IMAGE must
be run once for each detail level of each feature. The method of
operation is simple - IMAGE reads the input tape which BLOKS has
created in column order and each block of data is stored on drum.
As it is stored the address of the data and length of the data
is recorded. Once all data is stored, the index is created by
summing the lengths of the blocks in all possible groups of four
which could form part of a neighborhood. These entries are then

sorted in row order and stored in the index file.

74

Operating Instructions

IMAGE is the first program in drum file 51 and can be loaded
with the system load sequence:
RW 51
LO 51

The following assignments are necessary:

LU Device

01 Input tape
03 Printer

05 Teletype
07 Drum

Before executing, two drum files must be allocated to receive
the data and the index. The program is executed with the system
start command ST 2E00. IMAGE will respond with a set of questioms,
an example of which is given in Figure 26. The user responses are
underlined. This data, input by the user, is formatted and printed
on the line printer, followed by a list of the block numbers, in
both row and column order, the drum address for the data of a
block and the length in bytes of each block. This listing ends
with the number of drum blocks used for the data file. A listing
of the index is then printed. Figures 27, 28 and 29 show the
three parts of the IMAGE output for a 16-block detail level of a

geographic data base.

75

MAPDATA
NAME AND DETAIL LEVEL? (A4,1X,I2)

map Ol

DATA FILE NUM? (I3)
022

INDEX FILE NUM? (I3)
024

BLOCK COUNT? (I14)
0016

X-AXIS BLOCK COUNT? (I2)
%

END

EOJ

Figure 26. Example Teletype Input for IMAGE Program

76

DATABASE MAP DETAIL LEVEL 1
DATA FILE IS 22
INDEX FILE I8 24
X=AXIS RLOCK COUNT 4
Y=AXI8 RLOCK COUNT 4
TOTAL BLOCK COUNT 16

Figure 27. IMAGE Program OQutput Restating Input Parameters

ROW Cot. CHATINS RLOCK FNTRY POINTS
13 1 3 “ 4] 33
0 2 o] 2 1 2¢
) 3 3 3 9 12
{ A 5 4 1 K14
14 o] 2 5 15 1a
1 6 9 A 9 71
a 7 - it @ a7
oS 8 a8 13 15 41
15 Q 7 16 A 52
11 i 19 19 12 138
7 11 17 28 6 {mao
3 12 1 35 3 41
1A 13 14 37 12 91
2 14 1 A3 7 63
8 15 14 47 6 75
4 16 12 52 { 69

57 PRUM RLOCKS tISED
72 Gl OF 16 BLOCKS MISSING

Figure 28. IMAGE Output Showing Number of Chains and
Points per Map Block, Drum Block Address and Byte
Entry in Drum Block for Each Block of Data.

77

Al oCK
“
=y

1A
37

I
Lo B

- R

Figure 29.

NRM R NCKS

FNTRY
A

s

8

12

POINTS
33
10
52
91

USER AY TNHEX

cnL POINTS
05
169
340
208

Output of IMAGE Program Showing
Index for Column of Data

78

APPENDIX II

SYSTEM INITIALIZATION PROGRAM

INTRODUCTION
System initialization is done by the SETUP program. SETUP
assigns an initial value to every variable in common and writes
.common out to tape. It also stores a PALLET image of a menu and
an empty image of "world," to which the map will be attached,
in the PALLET working file. When the GDD itself is executed,
the tape created by SETUP is read into the common locations at
the top of core, immediately initializing all variables in common.
In operation, SETUP reads the values for common variables
from cards. Those common variables not required on an input card
are set to zero or defined by some function of the input parameters.
The following discussions will describe the input cards and the

operating procedure for SETUP.

INPUT CARDS

A card (or several cards) is used to input the values for a
common block. The order in which the commons are initialized
is set by the program and will be specified below. The data on
all input cards starts in column 10. From column 10 on, the
format of the card varies according to its particular purpose.
The first nine columns are not read by SETUP but can be used by the
programmer to identify the card.

The first cards to be read contain values pertaining to
the system as a whole or to all data bases. They include the FAC,
MENU, TREES, COLORS, COMMUN, ERASE, MAP, and CURSTA commons. The
next set of cards define the values of the DATBAS common. Finally,
the PALLET file definition cards are read in and then the MACRO

common is initialized.

79

Common Initialization Cards

The first ten cards are defined in Tables II through XI. In
these tables, the first column gives the names of the variables
to be initialized in the common identified at the top of the table.
The information in the Purpose column can be supplemented from the
common definition tables in Appendix IV. The example value is
‘the value used by the current system.

Card #1 does not initialize a common. The length of the
entire common section is used by SETUP to write the correct amount
of core out to tape. 3

Card #3 initializes the variables which tell the system
where to locate parts of the menu. The locations are given in a
PALLET coordinate system defined to be(0.,0.)to (511.,479.) - one
unit per dot on the screen. The locations are figured out by the
24 x 14 dot matrices which contain a character. Thus, the first
line on the bottom of the screen has a y-coordinate of 24 and
the first character has an x- coordinate of 0. The second line
has y- coordinate = 48 and the second character has an x—- coordinate
of 1l4.

On card #5 the function buttons are identified. The initial
values given in the table are the decimal representations of the
characters: generated by the RAMIEK when these function buttons are
hit. These characters are defined in the RAMIEK documentation.

Card #6 defines the colors, red, yellow, green and black,
used by the menu for the one plugging of the RAMIEK given in
Appendix III. These colors can be changed by replugging the red,
blue and green outputs of the RAMTEK into different plugs on
the TV monitor. This, too, is documented in the RAMTEK manuals.

The COMMUN common is initialized by card #7. The feature
data bases are numbered in the order in which they are read into

the DATBAS common. By setting the proper entries in the SELECT

80

array to the detail level of the features needed in the initial
display, the user forces the display of these features.
DATBAS Initialization

The next group of cards to be read in defines the feature
library by initializing the DATBAS common. This process is done
in a loop repeated once for each feature. Within this loop is

another loop repeated once for each detail level of the feature.
.Thus, each feature is defined by one card (see Table XII) followed
by two cards (see Tables XIV and XV) for each detail level of that
feature. This sequence is repeated for each feature. The order
in which the features are read in is the order in which the
features are indexed throughtout the GDD program. If the first
feature read in is coastlines, then to select coastlines for
display, the first element of the SELECT array in the GOMMUN
common is set to the desired detail level.

Tables XII through XV define the cards needed to perform the
DATBAS initialization. The first card in Table XII is needed
only once to define the number of features in the library. Each
of the other three types of cards must be repeated to initialize
all features. If there are two features, the first with two detail
levels and the second with one, the order of cards is as follows:

Card #11

Card #12 for lst feature

Card #13 for lst detail level

Card #14 for lst detail level

Card #13 for 2nd detail level

Card #14 for 2nd detail level

Card #12 for 2nd feature

Card #13 for lst detail level

Card #14 for lst detail level

81

PALLET File and Macro Definition

This last group of cards initializes the PALLET file con-
taining the menu and the macro expansion capability of the GDD.
Two cards (Table XVI and XVII) are read first, followed by a loop
which reads two cards (Tables XVIII and XIX) for each entry in the

menu, in the order in which they should appear in the menu.

OPERATING INSTRUCTIONS
The program SETUP can be loaded from tape DHL 007 using
the COREDP program. The following sequence is necessary to load

SETUP. Computer responses are underlined.

Load DHL 007 on drive 95.
AS 0195
RW DE
BI DCOO
Lo DE
ST DCOO
LOAD OR STORE
LO
DEVICE NUMBER (NN)
01

START, END

0080, 7000
EOJ

The following assignments must be made to run SETUP;:

LU Device

01 Card Reader
05 Teletype

06 Output tape
07 Drum

82

After the assignments are made, load the input cards into the
card reader and issue the start command:

ST 2E00
When SETUP is done, the output tape will contain the initialized

common. The tape may now be used to initialize the GDD.

83

Common - NA

Format Statement (9X,14)

-Variable Purpose

ICOML length in decimal

of all common

Table II

Card #1
Example
Initial Value Card Col Format
2844 10-13 14

84

Table III

Card #2
Common - FAC
Format Statement (9X,2F10.0)
Example
Variable Purpose Initial Value Card Col Format
* ZOOMIN magnification factor .666666 10-19 F10.0
when zooming in
Z00MOT magnification factor 1.5 20-29 F10.0

when zooming out

85

Table IV

Card #3
Common - MENCON
Format Statement (9X,7F6.1)
Example
Variable Purpose Initial Value Card Col Format
ONXC x-coordinate of the 28.0 10-15 F6.1

left side of the ON
column of the menu

ONRXC x-coordinate of the 304, 16-21 F6.1
right side of the ON
column

OFFXC X-coordinate of left 350. 22-27 F6.1
side of OFF column

OFFRXC x-coordinate of right 392, 28-33 F6.1
side of OFF column

STATY y-coordinate of status 48, 34-39 F6.1
line of menu

RESYC y-coordinate of system 24, 40-45 F6.1
response line

RLEFT Xx-coordinate for start 28. 46-51 F6.1

of status and response
lines

86

Table V

Card #4

Common - MENCON
Format Statement (9X,4(2A4,1X))

Purpose

Variable

MENNME

STATUS

SYSTAT

SYSRES

contains PALLET name
of the image of the
menu

contains PALLET name
of the image con-
taining status
information

contains PALLET name
of character string

of the system status
message

contains PALLET name
of character string

.0of the response

message

Example

Initial Value Card Col Format
MENUIMGE 10-17 2A4
STATUS 19-26 2A4
SYSTATUS 28-35 2A4
SYSRES 37-44 2A4

87

Table VI

Card #5

Common - TREES
Format Statement (9X,2I1,1X,2A4,8(13,1X),2A4)

for image, defined in
map coordinate system,
containing geographic data

88

Example

Variable Purpose Initial Value Card Col Format

MAPTRE PALLET device number 1 10 . I1
of map display tree

MENTRE PALLET device number 2 11 Il
of menu display tree

WORLD PALLET name of node WORLD 13-20 2A4
to which geography
is attached

ZINBUT Zoom in function 141 21-23 13
button on RAMTEK

TRNBUT Translate function 134 25=-27 13
button

SLCTBT Select function 139 29-31 I3
button

AUFBUT Normal mode selection 140 33-35 I3
button

ZOTOUT Zoom out function 137 37-39 13
button

MENBUT Menu function button 135 41-43 13

AONBUT Automatic mode 136 45-47 13
selection button

STABUT Special mode selection 144 49-51 13
button

RMAP Contains PALLET name MAP 53-60 2A4

Table VII

Card #6
Common - COLORS
Format Statement (4 (12,1X))
Example

Variable Purpose Initial Value Card Col Format
RED decimal represen- 02 10-11 12

tation for color

red on RAMTEK
YELLOW RAMTEK color yellow 06 13-14 12
GREEN RAMTEK color green 04 16-17 12
BLACK RAMTEK null color 00 19-20 12

89

Table VIII

Card #7
Common - COMMUN
Format Statement (9X,10I2)
Example
Variable Purpose Initial Value Card Col Format
SELECT defines which feature 01 10-29 1012

data bases should
initially be dis-
played by setting
the proper entries
in the SELECT array
to the wanted detail
level.

90

Common - ERASE
Format Statement (9X,I3)

Variable Purpose

ERSIZE defines the length
' of the ERASE array

Table IX

Card #8

Initial Value

Card Col

Format

40

91

10-12

I3

Table X
Card #9

Common - MAP
Format Statement (9X,4F10.4)

Example
Variable Purpose Initial Value

Card Col

Format

MX1 x-coordinate of -.398
lower left corner
of European map
in projected map
coordinates

MY1 y-coordinate of -.266
lower left corner
of European map
in projected map
coordinates

MX2 X-coordinate of .278
upper right corner

MY2 y-coordinate of 410
upper right corner

92

10-19

20-29

30-39

40-49

F10.4

F10.4

F10.4

F10.4

Table XI

Card #10

Common - CURSTA

Format Statement (9X,4F10.4)

Example
Variable Purpose Initial Value

Card Col

*
Format

XCENM x-coordinate of -.03
the center of the
map for initial
display in pro-
jected map
coordinates

YCENM y-coordinate of .03
initial center

XEXTNT initial x-extent of .002093749
map in map units per
dot on display screen

YEXTINT initial y-scale of map .001601576
in map units per raster
line

10-19

20-29

30-39

40-49

F10.4

F10.4

F10.4

F10.4

*
The FORTRAN input routine gives precedence to the decimal point
in the input field, overriding the format specified for that

field.

93

Table XII

Card #11
Common - DATBAS
Format Statement (9X,12)
Example
Variable Purpose Initial Value Card Col Format
' NUMDB defines number of 2 10-11 12

features in library

94

Table XIII

Card #12 (and repeated for each feature)

Common - DATBAS - one card for each feature

Format Statement (9X,A4,1X,I1,1X,I1,1X,I2)

contains data base

number of detail
levels for this

0 if feature not
listed in menu
1 if feature is

Variable Purpose
"PREFIX

name
NUMLEV

feature
INMENU

listed
POSFET

position feature is
listed in menu in
lines from the top
of the 1list

Example
Initial Value Card Col- Format
RIVR 10-13 Ad
2 15 Il
1 17 Il
2 19-20 I2

95

Table XIV

Card #13 (and repeated for each detail level)

Common - DATBAS (one card for each detail level of feature currently

being initialized)
Format Statement (9X,2F10.6,214)

Example "
-Variable Purpose Initial Value Card Col Format
ZMOTHR zoom out extent .001395832 10-=19 F10.6
threshold
ZMINTH zoom in extent .000275720 20-29 Fl10.6
threshold
NUMX number of blocks 9 30-33 14
into which detail
level is divided in
X direction
NUMY number of blocks y 9 34-37 14

axis is divided into
y direction

*
ibid.

96

Card #14 (and repeated for each detail level)

Table XV

Common - DATBAS (one card for each detail level of feature currently
being initialized)

Format Statement (9X,2I3,I1,1X,I2)

‘Variable Purpose

IFILE decimal
of drum
taining

DBINDX decimal
of drum
taining

ITYPE l=point

file number
file con-
data

file number
file con-

index

data base

2=line data base

ICOLOR color of data base

according to current

plugging of RAMTEK

Example
Initial Value Card Col Format
119 10-12 13
120 13-15 13
2 16 I1
08 18 -19 12

97

Table XVI

Card #15
Common - FILE
Format Statement (9X,I3)
Example
Variable Purpose Initial Value Card Col Format
'MFILE identifies decimal 115 10-12 13

drum file number to
be used by PALLET
to store menu image

98

Table XVII

Card #16
Common - MACRO
Format Statement (9X,12)
Example
Variable Purpose Initial Value Card Col Format
' NUMFET number of features 2 10-11 12
actually listed in

the menu

99

Table XVIII

Card #17 (and repeated for each line in the menu)

Common - MACRO
Format Statement (9X,4A4,12)

Example
Variable Purpose Initial Value Card Col Format
TITLE 16 characters to RIVERS(2) 10-25 4A4
) appear as the menu
entry for that
feature
MACNUM number of features 1 26-27 12

in the macro ex-
pansion of this
menu entry

100

Table XIX

Card #18 (and repeated for each line in the menu)

Common - MACRO
Format Statement (9X,412)

Example
Variable Purpose Initial Value Card Col Format

MACEXP the ordered numbers 01 10-17 412
of each feature .
data base repre-

sented by this

line in the menu

101

APPENDIX III

GDD OPERATING PROCEDURES

OPERATING INSTRUCTIONS
The following three tapes are needed to run the GDD:
DHL 019 - contains core image of GDD for the I-70
DHL 004 - contains core image of GDD for the I-4
DHL 018 - output of SETUP program to initialize the I-4
Initialize both machines and start at address X'l108'. Be

sure the RAMTEK is on and plugged in the following manner:

DISPLAY MENU
MONITOR MONITOR
CHANNEL SUBCHANNEL INPUT INPUT

0 1 R

0 2 G

0 3 B

1 1,0 R

1 2,0 G

i 3,0 B

The system tapes can now be loaded using the COREDP program.

The following sequences are necessary: (computer responses are

underlined)
1-70 14
Load DHL 019 on drive 85 Load DHL 004 on drive 95
AS 0685 AS 0195
ST 2EQ0 RW DE
LOAD OR STORE BI DCOO
LO Lo DE
DEVICE NUMBER ST DCOO0
06

102

I-70 (cont'd) I-4 (cont'd)

START, END LOAD OR STORE
0080, 8000 LO
E0J DEVICE NUMBER
01
START ,END
0080, FFFE
-E_Oi.

Now load DHL 018, the SETUP output tape, on drive 85 on
the I-4., Start the I-70 with the following command:
ST 3000
Then start the I-4 by issuing :
ST 2E00
Both machines should type MPV2.3 followed by the word SYSINIT on
the I-4. The map should then appear on the display screen. When
the entire map is displayed, both machines will cycle with the
display panel lights blinking, indicating they are idling waiting
for messages.
Once the display has appeared, the operator can zoom,

translate, use the menu, or select modes as described in Section II.

103

APPENDIX IV

COMMONS

INTRODUCTION

The GDD has 13 labeled common blocks. The variables are
grouped in blocks according to function - variables relating to
‘a specific aspect of the system are in one common block. Nine
of the thirteen blocks contain only static variables which retain
their initial values throughout the operation of the GDD. The
other four either contain system status information or are used
for intermodule communication. The discussion below will center
on these dynamic commons; the information in the static commons is

briefly stated at the end.

COMMONS

The use of the COMMUN common to provide intermodule com—
munication has been discussed in Section V. The use of SELECT
and DELETE arrays of the COMMUN common is restated in Table XX.
What has not been stated before is the relationship between a
feature data base and an entry in the SELECT and DELETE arrays or
any of the arrays in the DATSTA or DATBAS commons. Previously,
only the "proper entry'" has been referred to. The answer is
simple and relates to any variable array containing information
about the set of feature data bases: when the system is initialized
data is read from cards describing the size and location of each
feature data base. The order in which the description of the
data base is read is the order in which it appears in the common
arrays. The first feature read in becomes feature number one,
and the first entry in all arrays pertaining to the feature data

bases 1s assigned to feature number one. For example, in the case

104

of the COMMUN common, if the river data base is to be displayed
at level one and is currently displayed at level two, DELETE(2)
is set non-zero and SELECT(2) is set to one. Assuming the river
feature was the second feature described by the cards at initializa-
tion time, the current river neighborhood will be erased and a
new one retrieved from detail level 1.

CURSTA is another dynamic common briefly discussed in Section
V. It contains the current and previous status of the display
window - center point, extent, cursor position and mode. Table
XXI lists the CURSTA variables and their meaning. All variables
of the CURSTA common except MODE are only altered by the CURSTA
subroutine of the Data Exception module when it receives a message
from the Function Request module. Thie message contains not
only the new center point and scale, but also previous values.
All values are stored in the CURSTA common. The variable MODE
indicates whether the system is. in automatic, normal or special
mode and is only changed by the three routines in the Mode module.

DATSTA is another status common. It contains the status of
each data base currently displayed. Table XXII lists the variables
and the meaning of the DATSTA common. CURLEV and COL are modified
only by the Data Base Management module, GX and GY by the Data
Exception and the Data Base Management module and AUTOFS by the
Menu module and Data Exception module.

The final dynamic common is ERASE. This common contains all
variables needed to erase a column or set of columns from the

display screen. Table XXIII defines the variables in this common.

STATIC COMMONS
The static commons contain constants defined when the system
is initialized. No variable in the common is altered after

initialization. The purpose of each of the nine static common

105

blocks is self-evident from Table XXIV through Table XXXII which define
the variables in each common. Only the MACRO common needs elu-
cidation.

The MACRO common contains all the variables necessary for
identifying which feature has been selected from the menu by
the user and expanding this feature into as many as four different
data bases. For example, the menu could contain separate entries
for coastline and political boundaries; each could be turned
on or off separately; or, either in addition to or in place of
those two entries, an entry called "boundaries" could appear
in the menu. If "boundaries'" were selected it would be expanded
into the two data bases, coastlines and political boundaries.
This expansion would be done by first examining MACNUM to deter-
mine how many data bases are represented by the feature selected
from the menu. In this case, it is two. The first two entries
in MACEXP for the menu feature selected are the ordered numbers
assigned at initialization time to political and coastline
boundaries. These numbers are used as the indices of the SELECT
and DELETE arrays of the COMMUN common to request an operation
on these data bases. It should be noted that the index into
MACNUM and MACEXP is the position of the selected feature on the

display screen.

106

VARIABLE

SELECT(10)

DELETE (10)

TYPE

I

Table XX

COMMUN COMMON

MEANING

Intermodule communication identifying
which data bases have been selected
for display either by the menu or
automatic zoom thresholds.

0 - data base is not to be displayed
1 - 4 detail level at which data base
should be displayed.

Intermodule communication identifying
which currently displayed data bases
should be deleted either because of
menu deletion or automatic zoom
thresholds.

0 - if not to be deleted

1 - if to be deleted.

107

VARIABLE

MODE

XCENM

YCENM

OXCEN

OYCEN

XEXTNT

YEXTNT

OXXTNT

OYXTNT

XCURA

YCURA

OXCURA

TYPE

Table XXI

CURSTA COMMON

MEANING

Identifies the mode of the system

1 = Automatic
2 = Normal
3 = Special

X-coordinate of map center in projected
map coordinates

Y-coordinate of map center in projected
map coordinates

Value of XCENM prior to last translate
or zoom

Value of YCENM prior to last translate
or zoom

Current extent of displayed map in
X direction given in map units per
dot on screen

Current extent of displayed map in
Y direction given in map units per

lines on the screen

Value of XEXTINT prior to last zoom or
translate

Value of YEXTINT prior to last zoom or
translate

X position of cursor in absolute
device coordinates (0-479)

Y position of cursor in absolute
device coordinates (0-511)

Value of XCURA prior to last zoom or
translate

108

Table XXI (concluded)

VARTABLE TYPE MEANING

OYCURA R Value of YCURA prior to last zoom or
translate

XCURM R X cursor position in map coordinate
system

"YCURM R Y cursor position in map coordinate
system

OXCURM R Value of XCURM prior to last zoom or
translate

OYCURM R Value of YCURM prior to last zoom or
translate

109

Table XXII
DATSTA COMMON
VARIABLE TYPE MEANING

CURLEV (10) I The current detail level at which
each feature data base 1is displayed.
0 - not displayed
1 - 4 current displayed detail level

AUTOFS (10) I 0 - if feature not currently selected
for display by menu or automatic mode.
1l - if feature currently selected for
display by menu or automatic mode.

If AUTOFS = 1 for a feature the
feature is not necessarily displayed;
this is still a function of the extent
thresholds for that feature. It does
mean that if in normal mode and AUTOFS
= 1, the feature will be displayed
when scale is within the thresholds.

GX(10) T X-coordinate of grid point which
defines center of the current neigh-
borhood of blocks. If a detail level
is divided into N blocks in the X
direction, GX for a data base ranges
from 2 to N-2 depending on which line
of the grid the center point of the
displayed map is nearest.

GY (10) I Y-coordinate of grid point which
defines center of the current neigh-
borhood of blocks. If a detail level
is divided into N blocks in the Y
direction, GY for that data base ranges
from 2 to N-2 depending on which vertex
of the grid the center point of the
displayed map is nearest.

COL (4,10) I For each displayed feature, COL contains
the block numbers of the four blocks
of the neighborhood which are at the
top of the columns of the neighborhood.
The blocks are numbered in row order.

110

Table XXII (concluded)

VARIABLE TYPE MEANING

COL (cont'd) COL holds these block numbers in their
order in the neighborhood from left
to right. A value of O indicates that
a column in that position contains no
data. If a feature is not displayed,
COL for that feature is O.

111

VARIABLE TYPE

ERSAR(2,40) A

ICNT I

ERSIZE I

Table XXIII
ERASE COMMON

MEANING

Contains a list of the 8-character
PALLET names of the columns of neigh-
borhoods that need to be erased from
the display. A name consists of the
4 character feature name in the
variable PREFIX and the four byte
column number in the variable COL.

Counts the number of entries currently
in ERSAR,

Maximum size of the ERSAR array.

112

VARIABLE

RED

"YELLOW

GREEN

BLACK

TYPE

Table XXIV

COLORS COMMON

MEANING

Value needed to produce red on the
RAMTEK for standard plugging given
in Appendix III.

Same as above for yellow

Same as above for green

Value is 0 to produce black.

113

VARIABLE

PREFIX(10)

'NUMLEV (10)

INMENU(10)

ZMOTHR (4, 10)

ZMINTH (4, 10)

D(4,10)

NUMX (4, 10)

NUMY (4,10)

IFILE(4,10)

DBINDX(4,10)

TYPE

Table XXV

DATBAS COMMON

MEANING

Contains the 4-character feature name
to be used in constructing PALLET
names of displayed images.

Number of detall levels in each feature.

1 - feature is listed in the menu
0 - feature is not listed in the menu
but 1s included in the macro expansion
of some other listing in the menu.

The X extent values at which, when
zooming out, the detail level of a
feature should be changed.

The X extent values at which, when
zooming in, the detail levels of a
feature should be displayed or changed.

The width in map units in the X direction

of a single block of each of the
possible detail levels of a feature.

Number of blocks in X direction into
which each of the four possible detail
levels of a feature is divided.

Number of blocks in Y direction into
which each of the four possible detail
levels of a feature is divided.

Decimal drum file number for the data
base file of each of the four possible
detail levels of a feature.

Drum file number for each of the index

files of the four possible detail
levels of a feature.

114

VARIABLE

ITYPE(4,10)

ICOLOR(4,10)

TYPE

I

I

Table XXV (concluded)

MEANING

Data base type as defined by PALLET
1 = point data base
2 = line data base

Color with which each of the four
possible detail levels of a feature
should be displayed. Value is de-
termined by the RAMTEK plugging as
explained in Appendix III.

Actual number of feature data bases

available to the system up to a
maximum of 10.

115

Table XXVI

FAC COMMON
VARIABLE TYPE MEANING
ZOOMIN R Factor with which the old extent must

be multiplied to give new extent
after a zoom in.

. ZOOMOT R Factor with which the old extent must

be multiplied to give new extent
after a zoom out. :

116

Table XXVII

FILE COMMON
VARIABLE TYPE MEANING

MFILE I Decimal drum file number of file to

be used by PALLET for storage of
image definitions.

117

VARTIABLE

MACNUM(10)

MACEXP (10,4)

FETPOS (10)

POSFET (10)

NUMFET

TYPE

Table XXVIII
MACRO COMMON
MEANING

Number of data bases in the macro
expansion of each line of the menu
list. There are a total of 10 possible
lines in the menu. There is a maximum
of 4 features in a macro expansion.

For each of the lines in the menu list,
MACEXP contains the index of the
feature data bases represented by that
line. The actual number of features
for each line is determined by MACNUM.
The index for a feature in the macro
expansion is the order in which the

the data bases are defined during
initialization.

For each line on the screen, the value
of FETPOS gives the proper index into
MACNUM and MACEXP. (The line numbers
on the screen do not directly give

the index since there are several
title lines in the menu.)

For a given feature, POSFET contains
the line of the menu on the screen
which represents that feature. It is
in a sense the reverse of FETPOS.
POSFET goes from feature to screen,
FETPOS goes from screen to macro
index.

Number of lines in the menu list
of features.

118

VARIABLE

MX1

TYPE

Table XXIX
MAP COMMON
MEANING

X coordinate of
of the map area
coordinates,

Y coordinate of
of the map area
coordinates.

X coordinate of
of the map area
coordinates.

Y coordinate of

of the map area
coordinates.

119

the lower left corner
in projected map

the lower left corner
in projected map

the upper right corner
in projected map

the upper right corner
in projected map

VARIABLE

MENU

(ONXC

ONRXC

OFFXC

OFFRXC

MENNME (2)

STATUS (2)

SYSTAT (2)

SYSRES (2)

STATY

RESYC

RLEFT

TYPE

Table XXX
MENCON COMMON
MEANING

0 - if menu is not currently displayed
1l - if menu is currently displayed

X coordinate of left margin of ON
column of the menu*

X coordinate of the rigﬁt margin of ON
column of the menu*

X coordinate of left margin of OFF
column in menu*

X coordinate of the right margin of
OFF column in menu*

8-character PALLET name of menu image

8-character PALLET name of status
image

8-character PALLET name of status
character string

8-character PALLET name of system
response character string

Y coordinate of location of status
message in menu¥*

Y coordinate of location of response
message in menu¥*

X coordinate of start of both status
and response message*

*
Defined in terms of menu coordinate system - lower left(0,0) and

upper right (511,479).

120

Table XXXI

MNUTIA COMMON

(constant variables used only to make code more readable)

VARIABLE TYPE MEANING
ON I 1

.OFF I 0

YES I 1

NO I 0

UP I 1

PASS I -1
AUTON I 1

AUTOF I 2
STATIC I 3

1250,

VARIABLE

MAPTRE

MENTRE

WORLD (2)

ZINBUT
TRNBUT
SLCTBT

AUFBUT

ZOTBUT

MENBUT

AONBUT

STABUT

RMAP (2)

TYPE

Table XXXII

TREES COMMON

MEANING

PALLET device number on which map is

displayed

PALLET device number on which menu is

displayed

8-character PALLET name of tree node
to which map is attached

RAMTEK function key
RAMTEK function key
RAMTEK function key

RAMTEK function key
normal mode

RAMTEK function key

RAMTEK function key
entering menu

RAMTEK function key
automatic mode

RAMTEK function key
static mode

for zooming in
for tramnslating
for menu selection

for selecting

for zooming out

for requesting and

for selecting

for selecting

8-character PALLET name of image

containing map data

122

APPENDIX V

PROGRAM SUMMARY SHEETS

123

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: aBInD 2) MODULE: INITIALIZATION 3) MACHINE: 1-4

4) CALLING STATEMENT:
NA

~5) ARGUMENTS:
NA

6) CALLED BY:
NA T

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:

NA

9) PURPOSE AND METHOD:

ABIND is a dummy routine used during linking to account for entry points
called by Pallet but not needed by the GDD. By not including these
Pallet routines core was saved.

124

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: ALLOC 2) MODULE: DATA BASE 3) MACHINE: 1-4
DEALOC MANAGEMENT

4) CALLING STATEMENT:

CALL ALLOC(INDEX,IPNT,NONE)

5) ﬂBﬁ!ﬂEﬂlé:INDEX - the unpacked index for the neighborhood to be retrieve(
IPNT - returned pointer to allocated core block ; NONE - returned flag in-
dicating empty neighborhood

6) CALLED BY:
SETINX

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD:

ALLOC allocates a core buffer large enough to hold the longest column of
the neighborhood being retrieved. DEALOC deallocates the currently al-
located buffer. ALLOC compares the lengths of the four columns of the
neighborhood to determine which is longer. Since the length is the number
of points in the column, the buffer must be 8 bytes times this length. If
the neighborhood is empty NONE is set to indicate a buffer was not allo-
cated. The total length of the buffer allocated is the buffer for the
points plus the length of a Pallet image and a Pallet item header. This
space is reserved with an SVC 7. IPNT points to the address in the buffer
into which the data should be read.

125

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: ATOFFS 2) MODULE: MoDE 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL ATOFFS (MSG)

5) ARGUMENTS:

MSG - 8 element cursor status array sent by Pallet.

6) CALLED BY:

Pallet when normal function key is hit

77 CALLS ROUTINES:
NA

8) COMMONS REFERENCED:

CURSTA, MNUTIA

9) PURPOSE AND METHOD:

ATOFFS sets the MODE variable in the CURSTA common to indicate that the
system is in NORMAL mode.

126

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: sutoFz 2) MODULE: pata 3) MACHINE: 1_4
EXCEPTION

4) CALLING STATEMENT:
CALL AUTOFZ

5) ARGUMENTS:
NA

6) CALLED BY:
ZMTRNS

7) CALLS ROUTINES:
CLEVEL

~ 8) COMMONS REFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND METHOD:

AUTOFZ determines which features should be displayed, deleted or have a
change of detail level after a zoom when the system is in normal mode. For
each data base available to the system that has been selected by the user,
CLEVEL is called to determine the detail level at which it should be dis-
played. 1If this level is different from the current level SELECT is set
equal to this level and the DELETE flag is turned on.

127

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: AUTONS 2) MODULE: MODE 3) MACHINE: 1-4

4) CALLING STATEMENT:

CALL_AUTONS (MSG)

5) ARGUMENTS:

MSG - 8 element cursor status array sent by Pallet

6) CALLED BY:
Pallet when the automatic function key is hit

7) CALLS ROUTIRES:

NA
8) COMMONS REFERENCED:

CURSTA, MNUTIA

9) PURPOSE AND METHOD:

AUTONS sets the system mode to automatic by changing the MODE variable.

128

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: AUTONZ 2) MODULE: DATA 3) MACHINE: 1I-4
EXCEPTION

4) CALLING STATEMENT:

CALL AUTONZ
5) ARGUMENTS:
NA

6) CALLED BY:
ZMTRNS

7) CALLS ROUTINES:
CLEVEL

8) COMMONS REFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND METHOD:

AUTONZ determines which data bases should be displayed, deleted or have a
detail level change after a zoom when the system is in automatic mode. For
each data base available to the system, CLEVEL is called to determine the
proper detail level. If the returned level 1s not the current level, SELECT
is set equal to the returned level, and the DELETE flag is turned on. In
addition the AUTOFS flag for that data base is turned on indicating that

it 1s to be considered a user selected data base if the mode is changed to
normal.

129

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: cppver 2) MODULE: mEny 3) MACHINE: 14
DATA EXCEPTION

4) CALLING STATEMENT:
CALL CLEVEL(I, LEVEL)

5} ARGUMENTS: I - index into data bases .
LEVEL - returns level at which data base should be displayed

6) CALLED BY: mggrcr of MENU module; AUTONZ, AUTOFZ, of DATA EXCEPTION
module

7) CALLS ROUTINES:

NA
8) COMMONS REFERENCED:
CURSTA, DATBAS, DATSTA, MNUTIA

9) PURPQSE AND METHOD:

For the current displayed extent, CLEVEL determines the detail level at
which the Ith data base should be displayed. LEVEL is set to O on entry.
If the current extent is not within range CLEVEL returns. If a data base
has only one level of detail and falls within range of both the zoom out
and zoom in thresholds for that level LEVEL = 1 and CLEVEL returns. The
old and new extent values are compared to determine whether a zoom in or
zoom out has been done. If a zoom in was done, CLEVEL loops through the
zoom in threshold values in order until it finds the level whose threshold
is greater than the current extent. LEVEL = 0 if none are greater. For

a zoom out, the zoom out thresholds are examined in reverse order starting
with the highest detail level. LEVEL is set to the first detail level
whose threshold is less than the current extent.

130

GDD
PROGRAM SUMMARY SHEET

1) RDUTINE: CHARLV 2) MDDULE: MENU 3) MACHINE: I-4

4) CALLING STATEMENT:

CALL CHARLV(I,ICHAR)

5) ARGUMENTS:1_feature data base index,ICHAR - a 2 character string returned
by CHARLY

6) CALLED BY:
MENUUP, MESLCT

7) CALLS RDUTINES:
NA

8) COMMDNS REFERENCED:
COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPDSE _AND METHOD:

For a given data base, CHARLV returns a two character string representing
the number of the detail level at which the Ith data base is currently
displayed, or will be displayed when the menu is entered.

131

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: CLMERS 2) MODULE: DATA BASE 3) MACHINE: I-4
MANAGEMENT

4) CALLING STATEMENT:

CALL CLMERS (I,ISTART,IEND)

5) ARGUMENTS:p _ data base index; ISTART - first column of neighborhood td
be erased(1,2,3 or 4);IEND - last column of neighborhood to be erased (1,2,3
or 4)

6) CALLED BY:
MDISP, RPCOL’

7) CALLS ROUTINES:
N of GDD ERASE of Pallet

8) COMMONS REFERENCED:

DATBAS, DATSTA, ERASE,TREES

9) PURPOSE AND METHOD:

CLMERS enters the Pallet names of columns of neighborhoods to be erased into
the ERSAR array. If the ERSAR array is filled, CLMERS calls Pallet to
erase the entries already made. For the data base specified by I, CLMERS
constructs the name of any or all columns of the data base and enters them
into the ERSAR array. Which columns are entered is determined by ISTART
and IEND. There are four columns in a neighborhood; the block number of
the head of each column is stored in the COL array in order from left to
right. The range of values for ISTART and IEND is 1l to 4. All columns of
a neighborhood between and inclusive of ISTART and IEND are erased. If
the column represented by an element of the COL array is erased, that
element of COL is set to O.

132

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: CRTOMP 2) MODULE: FUNCTION 3) MACHINE: 1-70
REQUEST

4) CALLING STATEMENT:
CALL CRTOMP(XCURA, YCURA, XCURM, YCURM)

5) ABQEEENIg:XCURA - x absolute position of cursor: YCURA - v absolute
position of cursor; XCURM, YCURM - returned map coordinates of cursor.

6) CALLED BY:
SETMSG

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:

STATUS

9) PURPOSE AND METHOD:

CRTOMP translates the absolute position of the cursor on the screen to

its position on the displayed map in the map coordinate system. It cal-
culates the distance the cursor is from the absolute center of the display.
This distance is scaled by the previous extent value and added to the
previous center point. (The previous extent and center are used since the
cursor was positioned by the user before the translate or scale he requested
was done.)

1:33

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: CURPOS 2) MODULE: MENU 3) MACHINE: 1-4

4) CALLING STATEMENT:
CALL CURPOS(IX, IY, IDB, IACT)

5) ARGUMENTS: IX- Z-position of cursor in absolute coordinates:IY-Y-position
of cursor in absolute coordinates; IDB-macro expansion index returned by
CURPOS; IACT-function returned by CURPOS

6) CALLED BY:
MESLCT

7) CALLS ROUTIKES:
NA

8) COMMONS REFERENCED:
MACRO, MENCON, MNUTIA

9) PURPOSE AND METHOD:

CURPOS determines which line of the menu the cursor is opposite and returns
this in IDB; it also determines which function the cursor is under and re-
turns this in IACT. To find out which line the cursor is opposite, the

top and bottom coordinates of each line are compared to IY. The line into
which IY falls becomes the index into the FETPOS array. For each line on
the screen FETPOS contains the index into the macro expansion arrays. IDB
is set equal to this index. To determine which function the cursor is under
IX is compared to the x-coordinates of the left and right side of each
column. If IX does not fall into a column, IACT = -1. Otherwise it

equals ON or OFF.

134

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: CURSTA 2) MODULE: paTa 3) MACHINE: 1-4
EXCEPTION

4) CALLING STATEMENT:
CALL CURSTA(NAME,TYPE,LENGTH,STAT)

5) ARGUMENTS: NAME,TYPE,LENGTH - name of routine to receive the message,
type of message and length of messagein bytes.
STAT - current display status array

6) CALLED BY:
TRANTP, ZOMIOP via MP

7) CALLS ROUTINES:
ZMTRNS

~8) CUMMONS REFERENCED:

CURSTA

9) PURPQSE AND METHOD:

CURSTA copies the new current display status array sent by the Function
Request module into the CURSTA common. Thus, both the I-4 and I-70 now
have the current values for the center point and extent. After copying the
new values, CURSTA calls ZMTRNS to test for data exception conditions caused
by either a translate or zoom.

135

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: grumsg 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL (MSG,LEN,NUM)

5) ARGUMENTS: MSG - message to be printed; LEN - number of characters in
message; NUM - integer to be printed with message ’

6) CALLED BY:
RETREV ,MSEND

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD:

ERMSG prints error messages to the teletype. MSG is moved to an output
buffer. NUM is converted to ASCII and also stored in the output buffer.
The buffer is printed by an SVC call.

136

GDD
PROGRAM SUMMARY SHEET

3 .DATA EXCEPTION .
1) ROUTINE: GRDCEN 2) MODULE.DATA i 3) MACHINE: 1-4

MANAGEMENT

4) CALLING STATEMENT:
CALL GRDCEN(I,LEV,NGX,NGY)

5) ARGUMENTS: I - data base index
LEV - level for which neighborhood is being defined
NGX,NGY - coordinates cf grid point closest to center point of display.

6) CALLED BY: yipaNS in DATA EXCEPTION
MDISP in DATA BASE MANAGEMENT

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:
CURSTA, DATBAS, DATSTA, MAP

9) PURPOSE AND METHOD:

GRDCEN calculates the grid point of a given data base at a given level that
is closest to the center point of the display. The X and Y coordinates of
the grid point are calculated in a similar manner: for a given data base
and level, the width of the blocks into which it is divided is known. The
required grid point is the grid point that is no more than half this dis-
tance away from the center point. So, the distance between the edge of

the entire map and the center point is calculated and then increased by half
a block. width. This quantity is divided by a block width. The correct
coordinate is the quotient; forget the remainder. The coordinate is then
checked to be sure it is no less than 2 blocks from an edge. If it is,

it is changed so that the neighborhood it defines does not fall outside

the mapped area.

137

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: 1MPTAB 2) MODULE:1N1TIALIZATION 3) MACHINE: 1-70
-4

4) CALLING STATEMENT:
NA

5) ARGUMENTS :
NA

6) CALLED BY:
IMPINT of MP

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:
NA

9} PURPOSE AND METHOD:

IMPTAB is the table which tells MP which routines are to receive which
message types. There are two such tables for the GDD; one to be linked on
the 70 and one to be linked on the 4.

138

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: INIT 2) MODULE:INITIALIZATION 3) MACHINE: 1-4

4) CALLING STATEMENT:
NA

5) ARGUMENTS:
NA

6) EALLEQ_&L: operating system start command as the entry point into the
GDD :

7) CALLS ROUTINES:REpCOM, MDISP of GDD; DRMBFA, ON, CLEAR, DISPLAY, FIND of
Pallet; IMPINT, SEND, MP of MP; SETSAV, CHKSAV, INTFMP of FMP

8) COMMONS REFERENCED: COLORS, COMMUN, CURSTA, DATBAS, DATSTA, ERASE, FAC,
FILE, MACRO, MAP, MENCON, MNUTIA, TREES

9) PURPOSE_AND METHOD:

INIT initializes Pallet, MP and FMP. Using the Pallet ON routine it assigns
function buttons to the routines that should be invoked when that button is
pushed. It sends a message containing the initial center point and extent,
magnification factors and image names to the STATIN routine residing on the
I-70 to initialize that side of the GDD. It then displays an empty ''world"
image to set the proper coordinate system in Pallet, sets the current pointer,
and calls MDISP to display the initial data bases specified by the initial
value of the COMMUN common. Finally MP is called to wait for messages.

139

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: INMVE 2) MODULE: DATA 3ASE 3) MACHINE: 1-4
MANAGEMENT

4} CALLING STATEMENT:
CALL I.MVE(BUF(IPOS), INDEX)

5) ARGUMENTS:BUF (IPOS) Pointer to index entry read from drum;
INDEX returned unpacked index entries

6) CALLED BY:
RINDEX

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD:

INMVE unpacks four index entries as they are stored on drum into a FORTRAN
integer array. For each index entry, a halfword containing the drum address
and a halfword containing the length are required. These are packed into

a fullword on drum. INMVE unpacks each halfword into a FORTRAN integer.

140

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: wmpisp 2) MODULE: pATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL MDISP(IFORCE)

5) ARGUMENTS:
IFORCE - initially O; returned as a 1 if MDISP has changed the display

6) EALLEQ_QLZMENUUP of MENU module;
ZMTRNS ,MTRANS of DATA EXCEPTION module,INIT of INITIALIZATION module

7) CALLS ROUTINES: CLMERS, GRDCEN, SETINX, REDSND, DEALOC of GDD,
ERASE of Pallet

8) COMMONS REFERENCED:
COMMUN, DATBAS, DATSTA, ERASE, MNUTIA, TREES

9) PURPOSE AND METHOD:

MDISP erases and displays neighborhoods of feature data bases as dictated

by settings of the SELECT and DELETE arrays. MDISP first runs through

the DELETE array and makes an entry in the ERSAR array for each column of
each neighborhood that is flagged for deletion. Pallet is then called to
erase the data from the display tree. Now the SELECT array is examined.
Each non-zero entry in tne SELECT array is the level at which a data base
should be displayed. GRDCEN calculates the grid center of the neighbor-
hood. SETINX reads the index for the neighborhood. For each column, REDSND
is called to read the column of data from drum and send it to Pallet.

141

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: pgpos 2) MODULE: »MEnU 3) MACHINE: 1-4

4) CALLING STATEMENT:
CALL DBPOS(I,Y)

5) ARGUMENTS: 1 - data base iadex
Y - returned value of Y coordinate of the Itn data base in
menu.

6) CALLED BY:
MENUUP, WRTCHR

7) CALLS ROUTINES:

NA
8) COMMONS REFERENCED:
DATBAS, MACRO, MNUTIA

9) PURPOSE AND METHQD:

Given a specific data base, the Ith data base, DBPOS returns the Y coordin-
ate in the map coordinate system, of the line in the menu that represents
that data base. The array POSFET has, for each data base, the line number of
that feature data base on the screen. By multiplying this line number by
24 (24 dots in the Y axis of a character matrix) and subtracting it from
480 (the Y coordinate of the top of the screen) the Y coordinate of the
line of the feature data base is calculated.

142

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: MENUUP 2) MODULE: MENU 3) MACHINE: 1-4

4) CALLING STATEMENT:

MENUUP (MSG)

5) ARGUMENTS : MSG - eight element cursor status array sent by Pallet when
a routine is invoked by a Pallet ON condition.

6) CALLED BY:

Pallet ON condition when menu function key is hit.

7) CALLS ROUTINES: CHARLV, DBPOS, NAME, CHAR, SETSTA,MDISP of GDD; DISPLY,
OPENI, CHAR, CLEAR, REFRSH of Pallet

8) COMMONS REFERENCED: COLORS, CURSTA, DATBAS, DATSTA, MENCON, MNUTIA,TREES

9) PURPOSE AND METHCD:

MENUUP displays the menu image and creates and displays an image telling
the status of the system and feature data bases. If the menu is already
being displayed when MENUUP is invoked, the MDISP routine is called to
process the user's menu requests.

143

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: MESLCT 2) MODULE: MENU 3) MACHINE: 1-4

4) CALLING STATEMENT:
CALL MESLCT (MSG)

'5) ARGUMENTS: MSG - eight element cursor status array sent by Pallet when
a routine is invoked bty a Pallet ON condition.

6) CALLED BY:
Pallet ON condition when select function button is hit

7) CALLS ROUTINES:
CURPOS, RESPON, SETCHR, CLEVEL, CHARLV

8) COMMONS REFERENCED: COLORS, COMMUN, DATBAS, DATSTA, MACRO, MENCON,
MNUTIA

9) PURPOSE_AND METHOD:

MESLCT determines which feature in the menu has been selected by the user.
It determines which function was requested and, after testing for error
conditions, makes the proper entries into the SELECT and DELETE arrays of
the COMMUN common. The CURPOS routine is first called to calculate the
feature and function requested. An error message is displayed if the
cursor is not properly aligned with one or the other. The feature is ex-
panded to a list of features via the macro capability. In the case of an
ON function, for each feature in the expansion, CLEVEL is called to cal-
culate the proper detail level for the current extent. This is placed in
the SELECT array. In the case of an OFF function, error conditions are
checked, and DELETE set non-zero for each feature in the macro expansion.

144

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: MSEND 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL MSEND(NAME,P,TYPE,BUF,LENGTH,ERROR)

5) ARGUMENTS : NAME-name of routine to receive msg; P-priority of msg
TYPE-message type; BUF-address of msg; LENGTH-length of col. of data
ERROR-MP error return code

6) CALLED BY:
REDSND

7) CALLS ROUTINES:
SEND of MP ERMSG of Pallet

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD:

MSEND sets up the calling sequence to MP and calls MP. It is written in
assembly to allow the proper calculation of the length of the buffer con-
taining a column of data. The NAME, PRIORITY, TYPE, BUFFER address are
copied into the SEND parameter block. The length of the message is then
calculated from the index entry for the column being sent and the length
of the headers. SEND is then called and error conditions tested for.

145

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: MTRANS 2) MODULE: paTA 3) MACHINE: 1-4
EXCEPTION

4) CALLING STATEMENT:

CALL MTRANS (IFORCE)

5) ABQQMENI§} IFORCE - initially set to 0, it is set to 1 by the routine
MDISP if the display has been changed.)

6) CALLED BY:
ZMTRNS

7) CALLS ROUTINES:
GRDCEN, MDISP, RPCOL

8) COMMONS REFERENCED:

COMMUN, DATBAS, DATSTA, MNUTIA

9) PURPOSE AND METHOD:

MTRANS determines which data bases need a new neighborhood due to a
translation of the center point. It either calls for the replacement of

an entire neighborhood or simply one or two columns of the neighborhood.

For each data base that is currently displayed, GRDCEN is called to de-
termine the (X,Y) coordinates of the grid point closest to the center point.
These X,Y coordinates are compared to the old value. If the Y coordinates
are different, SELECT is set equal to the current level and the DELETE flag
turned on to force a neighborhood change. If only the X coordinate is
different RPCOL is called to change only one or two columns of the
neighborhood.

146

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: NaME 2) MODULE: wewy 3) MACHINE: 1-4
DATA BASE MANAGEMENT

4) CALLING STATEMENT:
CALL NAME (FIRST, SEC,RNAME)

5) ARGUMENTS:

FIRST - 1lst four characters of name
SEC - 2nd four characters of name
RNAME - 8 character name returned

6) CALLED BY: ppNyuP, WRTCHR of MENU module; CLMERS, REDSND of DBM module

7) CALLS ROUTIMNES:
NA

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD:

NAME constructs an 8-character Pallet name from two four character strings.
The two strings are simply concatenated and returned in the RNAME argument
which must be of dimension 2 in the calling program.

147

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: NEWCEN 2) MODULE: FUNCTION 3) MACHINE: 1-70
REQUEST

4) CALLING STATEMENT:
CALL NEWCEN(FAC,0XCENM, OYCENM, XCENM, YCENM)

5) ARGUMENTS FAC - magnification factor
OXCENM,0YCENM - previous center of map in map coordinates
XCENM,YCENM - returned new center in map coordinates

6) CALLED BY:
ZOMTOP

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:

STATUS

9) PURPOSE AND METHOD:

NEWCEN calculates the new center of the displayed map when a zoom is re-
quested. Since the point designated by the cursor remains stationary

when a zoom is done, there is an implied translate in any zoom. The new
center is calculated as the difference between the cursor position in map
coordinates and the difference between the cursor position and old center
point multiplied by the magnification factor, i.e,, XCURM - (XCURM - OXCENM)
*FAC

148

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: REDCOM 2) MODULE: 1NITIALIZATION3) MACHINE: 1-4

4) CALLING STATEMENT:
CALL REDCOM

5) ARGUMENTS:
NA

6) CALLED BY:

INIT

7) CALLS ROUTINES:
NA

8) COMMONS REFERENCED:
NA

9) PURPOSE_AND METHOD:

REDCOM reads the initial values of all common variables into core from the
tape created by the stand alone program, SETUP. It first rewinds the tape
on logical unit 6, and reads a 4 byte record containing the address of the
first common location. This address is then used as a parameter to the
next SVC tape read which reads the next record into core starting at the
address in the first record.

149

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: REDSND 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL REDSND(I,LEVEL,INDEX,IPNT,ICOL)

5) ARGUMENTS: 1 - data base index; LEVEL - detail level ‘to be displayed;
INDEX - index data; IPNT - points to core buffer; ICOL - column of neighbor-
hood to be displayed

6) CALLED BY:
MDISP, RPCOL -

7) CALLS ROUTINES:
MSEND, NAME, RETREV, SETBF, SETITM

8) COMMONS REFERENCED:
DATBAS, DATSTA, TREES

9) PURPOSE AND METHOD:

REDSND reads a column of data from drum, sets up Pallet headers for the
data and sends it to Pallet. RETREV is called to read the ICOL column

of data into core starting at location IPNT. SETBF and SETITM add

image and item headers required by Pallet to the data. MSEND transmits the
data to the I-70 using MP.

150

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: RESPON 2) MODULE: menu 3) MACHINE: 1-4

4) CALLING STATEMENT:
CALL RESPON(ICHAR,LEN,ICOLOR

5) ARGUMENTS: ICHAR - character string
LEN - length of character string
ICOLOR - color of character string

6) CALLED BY:
MESLCT

7) CALLS ROUTINES:
ERASE, OPENI, CHAR, DISPLY of Pallet

8) COMMONS REFERENCED:
MENCON, MNUTIA, TREES

9) PURPOSE AND METHOD:

RESPON is used to display responses to the user whenever a menu function
has been requested. It first erases the old response image, and then opens
a new one. The ICHAR character string is placed in this image. The

image 1is then displayed by attaching it to the status image.

151

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: RETREV 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL RETREV(IFILE,INDEX(I,ICOL),IPNT,NONE)

" 5) ARGUMENTS:IFILE-data base file number; INDEX(I,ICOL)-index information
for ICOLth column of data base; IPNT-address into which data should’ be
read ; NONE-returned flag set non zero if column is empty

6) CALLED BY:
REDSND

7) CALLS ROUTIRES:
ERMSG

8) COMMONS REFERENCED:
NA

9) PURPOSE AND METHOD:

RETREV reads a column of data from drum into core. The block address of
the ICOL column of data is taken from the index and used by the DRUM
utility to find the data on drum. DRUM reads the number of points specified
by the index. Once read, the starting location of the data within the
first block read from the drum is calculated. (The low order four bits of
the length entry in an index entry identifies which point in the drum block
is the first point for the column of data read.) IPNT is returned as this
location minus the 24 byte header required by PALLET . A -1 is stored at the
end of the data as a PALLET delimiter.

152

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: RINDEX 2) MODULE: pATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL RINDEX(I,LFTTOP,LEV,INDEX)

'5) ARGUMENTS: I - data base index; LFTTOP - block number of left top block
of neighborhood; LEV - level at which data base 1s to be displayed
INDEX - returned index value for neighborhood

6) CALLED BY:
SETINX

7) CALLS ROUTINES:
ERMSG, INMVE of GDD; DRUM - FORTRAN utility

8) COMMONS REFERENCED:
DATBAS, DATSTA

9) PURPOSE AND METHOD:

RINDEX reads the index entries for each of the four columns of a neighbor-
hood having LFITOP as the top left block. Each index entry is a fixed 4
bytes long. The block address in the index file of a specific index entry
is four times LFTITOP divided by 128 bytes per block. In case the entry
wanted is at the very end of the calculated block, over a block is read to
insure all four entries are read into core. The actual byte position in
the block is calculated as an index in a FORTRAN array. INMVE is called
to unpack the index data into a FORTRAN integer array.

153

GDD
PROGRAM SUMMARY SHEET

1) ROUTINE: RPCOL 2) MODULE: DATA BASE 3) MACHINE: 1-4
MANAGEMENT

4) CALLING STATEMENT:
CALL RPCOL(I,NGX,NGY,IFORCE)

5) Aﬂﬁﬂﬂiﬂlifl - data base index; NGX,NGY - coordinates of new grid center
IFORCE - set to 1 if RPCOL chahges display

6) CALLED BY:
MTRANS

7) CALLS ROUTINES:
CLMERS, SETINX, REDSND, DEALOC

8) COMMONS_REFERENCED:
DATBAS, DATSTA, ERASE, TREES

9) PURPOSE AND METHOD:

RPCOL erases and displays partial neighborhoods when a3 translation does not
require an eritirely new neighborhood. It first calculdtes which one or
two columns need to be etased d43 a function of the difference between the
old and new X grid coordinate. CLMERS make the necessary entries into the
ERSAR array. Next, the entries in the COL dtray ate totated to maintain
the left to right ordet of the columns in the data base. Those elements

of COL cleared by the rotate will be filled by the block number<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>